COMPLETE PROOFS OF GODEL’S INCOMPLETENESS
THEOREMS

LECTURES BY B. KIM

Step 0: Preliminary Remarks

We define recursive and recursively enumerable functions and relations, enumer-
ate several of their properties, prove Godel’s f-Function Lemma, and demonstrate
its first applications to coding techniques.

Definition. For R C w™ a relation, xg : w™ — w, the characteristic function on

R, is given by
_ 1 if =R(a),
a) =
xr(a) {0 if R(a).
Definition. A function from w™ to w (m > 0) is called recursive (or com-
putable) if it is obtained by finitely many applications of the following rules:

RI. e I":w" — w, 1<i<n,defined by (x1,...,2,) — x; is recursive;
e +:wXw—wand-:w X w— w are recursive;
® X< :@:w Xw—wis recursive.

R2. (Composition) For recursive functions G, Hy, ..., H such that H; : w™ — w
and G : w* = w, F: w" — w, defined by

F(a) = G(Hy(a),..., Hg(a)).

is recursive.
R3. (Minimization) For G : w™*! — w recursive, such that for all @ € w™ there
exists some x € w such that G(a,z) =0, F : w"™ — w, defined by

F(a) = pa(G(a,x) = 0)

is recursive. (Recall that pazP(x) for a relation P is the minimal z € w such
that = € P obtains.)

Definition. R(C w”) is called recursive, or computable (R is a recursive rela-
tion) if y g is a recursive function.

Proofs in this note are adaptation of those in [Sh] into the deduction system described in [E].
Many thanks to Peter Ahumada and Michael Brewer who wrote up this note.
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Properties of Recursive Functions and Relations:

Po.

P1.

P2.

P3.

P4.

P5.

Assume o : {1,...,k} = {1,...,n} is given. If G : w* — w is recursive, then
F : w™ — w defined by, for @ = (ay, ..., a,),

F(@) = G(ap(1), - Qo) = G2 (@), oo Ty (@),

is recursive. Similarly, if P(zq,...,2x) is recursive, then so is

R(Ila 71777.) = P(:CO'(l)v "'7‘TU(1€))‘

For Q C w* a recursive relation, and Hi, ..., Hy : w"® — w recursive func-
tions,

P={aecw" | QH(a),...,H(a))}
is a recursive relation.

Proof. xp(a) = xo(H1(@),...,Hk(a)) is a recursive function by R2.

For P C w™*!, a recursive relation such that for all @ € w” there exists
some = € w such that P(a,z), then F' : w™ — w, defined by
F(a) = uxP(a,x)
is recursive.
Proof. F(a) = pz(xp(a,z) =0), so we may apply R3.

Constant functions, Cy, ; : w™ — w such that C, x(@) = k, are recursive.
(Hence for recursive F' : w™t™ — w or P C w™*" and b € w™, both the
map (21, ..., Tm) — F(x1,...,;Tm;b) and P(z1,...,2m;b) C W™ are recur-
sive.)

Proof. By induction:
Cno(@) = pa(Iyfy (@,z) = 0)
Cn kv1(a) = pa(Ch k(a) < z)
are recursive by R3 and P2, respectively.
For Q, P C w", recursive relations, =P, P V @, and P A @ are recursive.
Proof. We have that
x-p(@) = x<(0,xp(@)),
xpvq(@) = xp(@) - xq(@),
P AQ==(—-PV Q).

The predicates =, <, >, and > are recursive. (Hence each finite set is
recursive.)
Proof. For a,b € w,

a=>biff 7(a <b) A =(b<a),

a>biff =(a <b),

a>biff (a>b) A =(a=0b), and

a <biff =(a>b),
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hence these are recursive by P4.

Notation. We write, for @ € w", f : w™ — w a function and P C w™*! a relation,
px < f(@) P(z,b) = px(P(x,b) V x = f(a)).

In particular, pz < f(@) P(x,b) is the smallest integer less than f(@) which satisfies
P, if such exists, or f(a), otherwise.
We also write

Jr< f(a) P(x) = (ux < f(a) P(x)) < f(a), and
Vo< f(@) P(x) = -3z < f(@) (-P(x))).

The first is clearly satisfied if some x < f(a@) satisfies P(x), while the second is
satisifed if all x < f(@) satisfy P(x).
P6. For P C w™t! a recursive relation, F : w™T! — w, defined by

F(a,b) = px<aP(x,b),

is recursive.

Proof. F(a,b) = px(P(x

,b)Vx = a), and thus F is recursive by P2, since
for all b, a satisfies P(x,b) V o = a.

\

P7. For R C w™*! a recursive relation, P,Q C w™*! such that
P(a,b) =3zx<aR(z,b); Q(a,b) =Vx<aR(z,b)
are recursive. (Hence, with P1, it follows both
Div(y,z)(=ylz) =T < z+ 1z =z -y),

and PN, the set of all prime numbers, are recursive.)

Proof. Note that P is defined by composition of recursive functions and
predicates, hence recursive by P1, and @ is defined by composition of re-
cursive functions, recursive predicates, and negation, hence recursive by P1
and P4.

P8. - :w X w — w, defined by

. a—"b ifa>Db,
a—b= .
0 otherwise,

is recursive.

Proof. Note that

a—b=pr(b+x=aVa<b).
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P9. If Gy,...,Gy : w™ — w are recursive functions, and Ry,..., Ry C w™ are
recursive relations partitioning w” (i.e., for each @ € w", there exists a
unique ¢ such that R;(@)), then F': w™ — w, defined by

G1 (E) if Ry (a),
Go (E) if Ry (6),
F(a)=q. .
Gy (6) if Ry, (a),
is recursive.
Proof. Note that
F =Gix-r, +  + GkX-R,-

P10. If Q4,...,Qr C w™ are recursive relations, and Rq,..., Ry C w™ are recur-
sive relations partitioning w™, then P C w”, defined by

Q1(a) if Ry(a),

P@)ift <: :

Qk (E) if Ry, (a),

is recursive.

Proof. Note that

X, (@) if Ri(a),
xp(@ =4 :

XQuk (a) if Ry, (E),
is recursive by P9.

Definition. A relation P C w" is recursively enumerable (r.e.) if there exists
some recursive relation @ C w™*! such that

P(a) iff 32Q(@, ).

Remark If a relation R C w” is recursive, then it is recursively enumerable, since
R(@) iff Jx(R(@) Nz = ).

Negation Theorem. A relation R C w™ is recursive if and only if R and ~R are
recursively enumerable.

Proof. If R is recursive, then =R is recursive. Hence by above remark, both are r.e.
Now, let P and @ be recursive relations such that for @ € w”, R(a) iff 32Q(a, x)
and —R(a) iff 3zP(a,x).
Define F : w™ — w by

F(a) = /m(Q(E, 'T) N P(a7 x))a

recursive by P2, since either R(a) or =R(@) must hold.
We show that
R(a) iff Q(a, F(a)).
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In particular, Q(a, F'(a)) implies there exists x (namely, F(a)) such that Q(a,z),
thus R(a) holds. Further, if =-Q(@, F'(a)), then P(a, F(a)), since F(a) satisfies
Q(@,z) V P(a,z). Thus ~R(a) holds.

The S-Function Lemma.

B-Function Lemma (Godel). There is a recursive function (3 : w? — w such that
B(a,i) < a—1 for all a,i € w, and for any ag,ai,...,a,_1 € w, there is an a € w
such that B(a,i) = a; for all i < n.

Remark 1. Let A = {aj,...an} C w~{0,1} (n > 2) be a set such that any two
distinct elements of A are realtively prime. Then given non-empty subset B of A,

there is y € w such that for any a € A, aly iff a € B. (y is a product of elements in
B.)

Lemma 2. If k|z for z # 0, then (14 (j + k)z,1 4+ jz) are relatively prime for any
J € w.
Proof. Note that for p prime, p|z implies that p[1 + jz. But if p|1 + (j + k)z and
p|l + jz, then plkz, implying p|k|z or p|z, and thus p|z, a contradiction.
Lemma 3. J : w? — w, defined by J(a,b) = (a + b)? + (a + 1), is one-to-one.
Proof. fa+b < d + ¥, then
J(a,b) = (a+b)>+a+1 < (a+b)2+2(a+b)+1 = (a+b+1)% < (' +V)? < J(d', V).
Thus if J(a,b) = J(a’, V'), then a +b=a' + V', and
0=J(d,b)—J(a,b)=d —a,

implying that a = a’ and b =¥/, as desired.
Proof of B-Function Lemma. Define

Bla,i) = pr<a—1(Fy<a(Fz<a(a= J(y,z) ADiv(l + (J(z,i) + 1) - 2,9)))),

It is clear that 3 is recursive, and that B(a,i) < a—1.
Given ay,...,ap—1 € w, we want to find a € w such that B(a,?7) = a; for all
i <n. Let

¢ =max{J(a;,1) + 1},
<n

and choose z € w, nonzero, such that for all j < ¢ nonzero, j|z.

By Lemma 2, for all j,! such that 1 < j <1 <¢, (1+ jz,1+ l2) are relatively
prime, since 0 < I — j < ¢ implies that (I — j)|z. By Remark 1, there exists y € w
such that for all j < ¢,

1+ (+1)z|yiff j = J(ai,i) for some i < n. (%)
Let a = J(y, 2).
We note the following, for each a;:
(i) a; <y <aandz<a;
In particular, y, z < a by the definition of J, and that a; < y by (x).
(ii) Div(1 + (J(a; i) + 1) - 2,y);
From ().
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(iii) For all x < a;, 1+ (J(z,1) + 1)z/y;
Since J is one-to-one, x < a; implies J(z,7) # J(a;,1), and for j # i,
J(z,7) # J(aj,7). Thus, by (*), « does not satisfy the required predicate
for y and z as chosen above.

Since for any other y' and 2/, a = J(y,2) # J(y',2’), we have that a; is in fact
the minimal integer satisfying the predicate defining 3, and thus S(a,i) = a;, as
desired.

The p-function will be the basis for various systems of coding. Our first use will
be in encoding sequences of numbers:

Definition. The sequence number of a sequence of natural numbers aq,...,a,,
is given by
<, ... 0n>=px(B(z,0) =nABx,1) =a1 A--- AB(x,n) = ay).

Note that the map <> is defined on all sequences due to the properties of 5
proved above. Further, since 3 is recursive, <> is recursive, and <> is one-to-one,
since

<A1y, >=<by,...,bp>

implies that n = m and a; = b; for each i. Note, too, that the sequence number of
the empty sequence is

<>= px(B(x,0) =0) = 0.
An important feature of our coding is that we can recover a given sequence from
its sequence number:

Definition. For each ¢ € w, we have a function (); : w — w, given by
(a); = B(a,i).
Clearly (); is recursive for each i. ()o will be called the length and denoted ih.

As intended, it follows from these definitions that ( < ay...a, >); = a; and
Ih(<ay...an>)=n.
Note also that whenever a > 0, we have Ih(a) < a and (a); < a.

Definition. The relation Seq C w is given by
Seq(a) iff Vo < a(lh(z) # h(a) V Fi < lh(a)((2)it1 # (a)it1)-

That Seq is recursive is evident from properties enumerated above. From our
definition, it is clear that Seg(a) if and only if a is the sequence number for some
sequence (in particular, a = <(a)1, ..., (a)mn@) >). Note that

—Seq(a) iff Jx < a(lh(z) = h(a) A Vi < h(a)((2)it1 = (a)it1)-
Definition. The initial sequence function Init: w? — w is given by
Init(a,i) = pe(lh(z) =1 A Vj <i((2)j+1 = (a)j41)-
Again, Init is evidently recursive. Note that for 1 <i <mn,
Init( <ay,...,ap>,1) =<ay,...,a;>,

as intended.
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Definition. The concatenation function * : w? — w is given by

ax*xb= px(lh(x) = lh(a) + Ih(d)

A Vi < Ih(a)((@)i+1 = (a)i+1) A VG < Ib)((®)m(a)+j+1 = (0)j+1)-
Note that * is recursive, and that
<AL Q> % <by...bp>=<ai...an,b1...0p,>,
as desired.
Definition. For F : w x w* — w, we define F' : w x wF — w by
F(a,b) =<F(0,b),...,F(a—1,b)>,
or, equivalently,
px(lh(x) = a AVi < a((z)i+1 = F(i,0))).

Note that F'(a,b) = (F(a+1,b))st1, thus we have that F is recursive if and only
if F' is recursive.

Properties of Recursive Functions and Relations (continued):
P11. For G : w X w X w™ — w a recursive function, the function F' : w X w™ — w,
given by
F(a,b) = G(F(a,b),a,b),
is recursive. Because F(a,b) is defined in terms of values F(z,b), for x
strictly smaller than a, this inductive definition of F' makes sense.

Proof. Note that

where

H(a,b) = px(Seq(z) A lIh(z) = a AVi < a((x)iy1 = G(Init(z,i),i,b)).

According to this definition, F'(0,b) = G( <>,0,b) = G(0,0,b),
F(1,b) = G( <G(0,0,b)>,1,b),
and
F(2,b) = G(<G(0,0,b), G( <G(0,0,b)>,1,b) >,2,b),
showing that computation is cumbersome, but possible, for any particular value a.

P12. For G : wxw™ - wand H : wxw™ — w recursive functions, F' : wxw™ — w
defined by

_ {F(G(a,b),b) if G(a,b) < a, and
H(a,b) otherwise,

is recursive.

Proof. Note that when G(a,b) < a, we have
F(G(a,b),b) = (F(a,)) (o541 = B(F(a,b),G(a,b) +1) = G'(F(a,b),a,b)

with recursive G'(z,y,%) = f(z, G(y,Z)+1). Thus F is recursive by P11.
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For most purposes, when we define a function F' inductively by cases, we must
satisfy two requirements to guarantee that our function is well-defined. First, if
F(z,b) appears in a defining case involving a, we must show that 2 < a whenever
this case is true. Second, we must show that our base case is not defined in terms
of F. In particular, this means that we cannot use F' in a defining case which is
used to compute F(0, 3).

P13. Given recursive G : w™ — w and H : w? x w™ = w, F : w x w™ = w given
by
Fla,b) = H(F(a —1,b),a—1,b) ifa> q, and
G(b) otherwise,

is recursive. (For example, the maps

sl — (n=1ln ifn>0
)1 n =20,

m=Y.m ifn >0,

(n,m) —m" =
1 n =0,

and

pz(z > n'® prime A PN(z)) ifn >0

n— (n+ 1™ prime =
( ) p {2 b0

are all recursive.)

Proof. Note that H(F(a—1,b),a—1,b) = H(3(F(a,b),a),a—1,b) has the
form of P11.

P14. Given recursive relations @ C w"*' and R C w™*! and recursive H :
w X w" — w such that H(a,b) < a whenever Q(a,b) holds, the relation
P C w"t!, given by

. P(H(a,b),b) if Q(a,b),
R

P(a,b) iff ( .
(a,b) otherwise,

is recursive.

Proof. Define H' : w X w™ — w by

H'(a,5) = H(a,b) if Q(a,b), and
’ a otherwise.

H' is clearly recursive. Note

xp(a,b) =

7 xp(H'(a,b),b) if H'(a,b) < a, and
xr(a, E) otherwise.

The following example will prove useful:
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Definition. Let A C w? be given by
Ala,c) iff Seq(c) Alh(c) =a AVi<a((c)iz1 =0V (¢)it1 = 1),

and let F : w? — w be given by

ux(A(a, x)) ifi=0,
F(a,i) = q pr(F(a,i —1) <z A A(a,z)) if0<i<2% and
0 otherwise.

Then the function bd : w — w is given by
bd(n) = F(n,2" —1).
Evidently, A, F, and bd are all recursive. In fact,

bd(n) = maz{< cica...c,, > | ¢; =0 or 1}.

Step 1: Representability of Recursive Functions in Q

We define @, a subtheory of the natural numbers, and prove the Representability
Theorem, stating that all recursive functions are representable in this subtheory.

Consider the language of natural numbers L = {+,-, 5, <,0}. We specify the
theory @ with the following axioms.

Ql. Vx Sz #0.

Q2. VavVy Sz =Sy —>zxz=1y.

Q3. Vx z+4+0=r=x.

Q4. VaVy z+ Sy = S(z +y).

Q5. Vz z-0=0.

Q6. VaVy - Sy=z-y+ .

Q7. Vz —(z <0).

Q8. VaVy < Sy+—zx <y Vzx=y.

Q9. VaVy z<yVzoez=yVy<ax

Note that the natural numbers, N, are a model of the theory Q. If we add to
this theory the set of all generalizations of formulas of the form

(5 A V(e = ¢%,)) = @,

providing the capability for induction, we call this theory Peano Arithmetic, or PA.
Thus Q C PA, and PAF Q.

Notation. We define, for a natural number n,

n=55...50.
—

n

Definition. A function f : w™ — w is representable in @ if there exists an
Ly-formula ¢(x1,...,x,,y) such that

for all k1,...,k, € w. We say ¢ represents f in Q.
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Definition. A relation P C w" is representable in () if there exists an Ly-formula
o(z1,...,2zy,) such that for all ky,... k, € w,

P(ki,....kn) = QF (k... kn)
and
Pk, ... kn) = QF =p(ki, .. kn)-
Again, we say that ¢ represents P in Q.

To prove the Representability Theorem, we will require the following:
Lemma 1. If m = n, then Q F m = n, and if m # n, then Q - —(m = n).

Proof. Tt is enough to demonstrate this for m > n. For n = 0, our result follows
from axiom Q1. Assume, then, that the result holds for £k = n and all [ > k. Then
we have that, for a given m > n+1, Q F m—1 # n. By axiom Q2 we have,
QFm—1%#n— m#*n+1. Hence we conclude that Q - m # n+ 1, and the
result holds for £ = n + 1, as required.

Lemma 2. QFm+n=m+n.

Proof. For n = 0, our result follows from axiom Q3. Assume, then, that the result
holds for k¥ = n. We must show it holds for k =n+ 1 as well. But Q - m+n =
m +n, and we obtain Q- m+n+1=m+n+1 by Q4.

Lemma 3. QFm-n=m-n

Proof. For n = 0, our result follows from axiom Q5. Assume, then, that the
result holds for K = n. Then Q@ - m -n = mn. Applying Q6, we have that
QF m-n+1=mn+ m, and applying the previous lemma, we have the result for
k =n+ 1, as required.

Lemma 4. If m < n, then @ F m < n. Further, if m > n, we have Q F =(m < n).

Proof. For n = 0, the result follows from Q7. Assume, then, that the results hold
for k = n. We show both claims hold for k =n + 1 as well.

First, suppose m < n + 1. Either m < n, and @ + m < n by the induction
hypothesis, or m = n, and Q - m = n by Lemma 1. In either case, by Q8 and Rule
T, we have that Q Fm <n + 1.

Second, suppose m > n + 1. Then m > n and by the induction hypothesis,
QF —(m < n). By Lemma 1, we also have @ F —=(m = n). Again applying Q8 and
Rule T, we have that Q - =(m < n+ 1), as desired.

Lemma 5. For any relation P C w™, P is representable in Q if and only if xp is
representable.

Proof. Assume P is representable and that ¢(z; ...x,) represents P. Let

V(@ y) = (0(@) Ay=0) V (=p(T) Ay =1).

We claim (T, y) represents x p:
Suppose P(ky,...,ky) holds. Then Q - ¢(k1,. .., kn). Now since

Pk, kn) = (Y= 0= P(ks, .. kn,y))
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is a tautology, we have Q -y = 0 <— 9(ki,...,kn,y), as required. Similarly, if
—P(k1,...,ky) holds, then Q - —¢(k1,...,k,), and since

Fﬁ@(ﬁ?)ﬁ)_)(y:lHd](ﬁv7kiay>7

we obtain that Q -y =1 <— 9¥(k1,...,kn,y), as required. Thus, ¥(Z,y) repre-
sents xp.

Assume now that (T, y) represents yp. Then ¥(Z,0) represents P.

In particular, when P(kq,...,k;,) holds, we have

QbE (kL. kn,y) ¢y =0.

Substitution of y by 0 yields @ F v¥(ki,...,ks,0), as desired. Similarly, when
=P(ki,...,ky) holds, we have

QEY(kyL.. kn,y) «—y =1,

and because @ - —(0 = 1) we may conclude @ F —t(k; ... k,,0), as needed. Thus
is P representable.

Lemma 6. For a formula ¢ in Ly,

QEwy = = (o1 = (@ <k — )
Proof. The proof is by induction on k. When £ is 0, we have

QF (z<0—= ).

This is (vacuously) true by axiom Q7. Now, assume that

QE¢i = ... = (pho1 — (. <k—¢)).
We must show that

QF g = = (pp = (@ <ktl—9)).

Equivalently, we want to show that I' F ¢ where I' = Q U {¢§, ..., o}, z < k+1}.
By Q8,T'F 2 <k V 2 = k. In the first case, the inductive hypothesis implies that
I' - ¢, while in the latter case, =z = k — (¢} +— ¢), and hence I' - . By either
route, I' proves ¢. a

Lemma 7. If (a) Q - —pf for each & < n, and (b) Q - ¢}, then for z # x not
appearing in @, B
QF(p ANVz(z <z — ) ¢« z=n.

Proof. We define
Y= (o ANVz(z <z — —p})).
Now, we obtain
Fr=n— = (pp AVz(z <n—= =) (%)
By (a) and Lemma 6, we get
QEFz<n— -y, (k)
and, applying substitution and generalization, we obtain
QFVz(z <n— —p).
Combining this with (b) and (x), we conclude
QFxz=n— 1.
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For the reverse implication, we note that
FVz(z <z — =2¢7) = (n <z — —py),

and thus (b) implies Q F ¢ — —(n < z). Now QU{¢,z < n} F ¢ A = by (**) and
the definition of t. Therefore @ F ¢ — —(z < n) and by Axiom Q9 we conclude
QFvY —xz=n.

Representability Theorem. Fvery recursive function or relation is representable
m Q.
Proof. It suffices to prove representability of functions having the forms enumerated
in the definition of recursiveness:
R1. I, +, -, and x<.
The latter three are representable by Lemmas 2, 3, and 4. In particular,
for +, say, we have that ¢(x1,z2,y) = y = 21 + 2 represents + in @, since
for any m,n € w,

QF o(m,n,y) +— y =m+n, and hence
QFVy(p(m,n,y) «—y=m+n),
as required. - and x« are similar (with y < making additional use of Lemma
5).
IT is representable by ¢(x1,...,2Zn,y) = x; = y. In particular, for any
ki,... kn € w, I"(k1, ..., ky) = ki, and hence
Q'_(p(ﬁ7vk7n7y) Hy:&Hy:Izn(klvakn)v
by our choice of ¢. Generalization completes the result.
R2. F(a) = G(H1(a),...,H,(a)), where G and each of the H; are representable.
Assume that G is represented in @ by ¢ and the H; are represented in
Q@ by 1;, respectively. We show that F' is represented by
Oé(f, y) = 321) sy zk(wl(fa Zl) JANEERIVA wk(fa Zk) A 410(217 sy Zkvy))
In other word we want to show, for any a4, ...,a, € w,

QFalay,...,an,y) <=y =GHi(a),..., H(a)) (1)

where @ = (a;...ap).
Now, for I' = Q U {a(as, ..., an,y)}, since the v; represent H;, we have

that T'F 3z1,...,2k(21 = H1(@) A -+ A zp = Hi(@) A o(21,.. ., 28, Y))-
Hence we have

F ): 3217...,25]@((‘0(]{1(6),...,Hk(a),y)),
and since the z; do not appear,
I E o(Hy(a),...,Hg(a),y).

Since ¢ represents G, we have

I' =y=G(Hi(a),...,Hg(a)),

as required.



COMPLETE PROOFS OF GODEL’S INCOMPLETENESS THEOREMS 13

On the other hand, for ¥ = QU {y = G(H1(a), ..., Hx(a))},

EI_QO(HI(E)77Hk(a)vy)
YE3zy,.,26(20 = Hi(@) A -z = Hi(@) A o(215- -5 2k, Y))

X 3217 SERE) Zk(wl(aa Zz) AR wk(a7 Zk) A @(zla sy Zkay))
Lrhalar,...,0n,Y)
Thus () is established.
R3. F(a) = pz(G(a,z) = 0), where G is representable in @) and for all @ there
exists = such that G(@,x) = 0, is representable in Q.
Assume G is represented in Q by ¢(21,...,Z,,2,y). Let
(@1, T, ) =08 A Vz(z <z — —p87).
Let F(a) =b and k; = G(a, 1) for ¢« € w. Then

QF plat,... an,i,y) «—y = ki,
thus
QF ¢lay, .- an,1,0) = 0=k,
. Hence now if j < b, so that k; # 0, then
QF —p(a1,...,an,4,0).
On the other hand, k, = 0, so

QF p(a,...,a,,0,0).
Hence, by Lemma 7,
QF (p(@z,y)f NVz(z <z — —p(@z,y)i)) +— x=b,
and thus,
QFY(a,z)+— xz=hb.
By generalization, we have that 1 represents F' in (), as desired.

Step 2: Axiomatizable Complete Theories are Decidable

We begin by showing that we may encode terms and formulas of a reasonable
language in such a way that important classes of formulas, e.g., the logical axioms,
are mapped to recursive subsets of the natural numbers. We use this to derive the
main result.

Definition. Let £ be a countable language with subsets €, &, and P of constant,
function, and predicate symbols, respectively (=€ P). Let V be a set of variables
for £. £ is called reasonable if the following two functions exist:
o h:LU{~,—,V}UV — w injective such that V = h(V), € = h(C), F = h(F),
and P = h(?P) are all recursive.
e AR : w — w \ {0} recursive such that AR(h(f)) = n and AR(h(P)) =n
for n-ary function and predicate symbols f and P.

For the rest of this note, the language £ is countable and reasonable.

Now we define a coding [] : {£-terms and L-formulas} — w inductively, by
e Forz € VUG, [z] = <h(x)>.
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e For L-terms uq,...,u, and n-ary f € F,
[furuz ... un] = <h(f),[ur], [uzl, .., Jun]>.
e For L-terms tq,...,t, and P € P,
[Ptity. ..ty =<h(P),[t1],...,[tn]> .
e For L-formulas ¢ and v,

|—§0 — 1/]1 = <h(_>)’ (9017 I—Qzﬂ >,
[—p] = <h(=), [e] >,
[Vap] = <h(V), [2], [¢] > .

Note that our definition of [] is one-to-one. Given a term or formula o, we call
[c] the Godel number of o.
We show the following predicates and functions are recursive (We follow defini-
tions for syntax in [E].):
(1) Vble={[v] |v eV} Cwand Const={[c] | c€ C} Cw.

Proof. Note

(2) Term={[t] | t an L-term} C w.

Proof. Note
Vj<(Ih(a)=1) Term((a);4+2) if Seq(a) A F((a)1)
Term(a) iff A AR((a)1) = Ih(a)—1,
Vble(a) vV Const(a) otherwise.

(3) AtF ={[o] | o an atomic L-formula} C w.
Proof. Note
AtF(a) iff Seq(a) A P((a)1) A (AR((a)1) = lh(a)-1)
A Vj<(lh(a)=1) (Term((a);j+2)).

(4) Form={[¢] | ¢ an L-formula} C w.

Proof. Note
Form((a)2) if a = <h(=), (a)2>,
Form(a) iff Form((a)2) A Form((a)s) if a =<h(—=),(a)2,(a)s>,
Vble((a)2) A Form((a)s) if a =<h(V),(a)z2, (a)s>,
AtF(a) otherwise.

(5) Sub: w3 — w, such that Sub([t], [z], [u]) = [t2] and Sub([¢], [z], [u]) =
[©Z] for terms ¢ and w, variable x, and formula .
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Proof. Define

c if Vble(a) A a =0,
<(a)1, Sub((a)2,b,c),. .. if Ih(a) > 1 A (a); # h(Y)
ub(a.b. &) — ooy Sub((a)pa), b, ¢) > A Seq(a),
Subla, b,c) <(a)1,(a)a, Sub((a)s,b,c)> if a =<h(V),(a)s, (a)s>,
A(a)2 #b
a otherwise.

Note that, if well-defined, the function has the properties desired above.

We show Sub is well-defined by induction on a: a = 0 falls into the
first or last category since Ih(0) = 0, hence Sub(0,b,c) is well-defined for
all bc € w. If a # 0, then (a); < a for all i < Ih(a), and thus we may
assume the values Sub((a);, b, ¢) are well-defined, showing Sub(a, b, ¢) to be
well-defined in all cases.

(6) Free C w?, such that for formula ¢, term 7, and variable =, Free([¢], [2])
if and only if « occurs free in ¢, and Free([7], [z]) if and only if x occurs
in T
Proof. Define

3j < (Ih(a)—1) (Free((a)j+2,b)) if h(a) > 1 A (a)1 # h(V),
Free(a, b) iff { Free((a)s,b) A (a)z # b if Ih(a) > 1 A (a)1 = h(V),
a="b otherwise.

Free clearly has the desired property, and that it is well-defined follows by
essentially the same induction on a as above.

(7) Sent={[¢] | ¢ is an L-sentence} C w.

Proof. Note
Sent(a) iff Form(a) A Yb<a (= Vble(b) V —Free(a,b)).

(8) Subst(a,b,c) C w? such that for a given formula ¢, variable x, and term ¢,
Subst([¢], [z], [t]) if and only if ¢ is substitutable for = in ¢.

Proof. Define

Subst((a)2,b, c) it a = <h(=), (a)2 >,
Subst((a)z2,b,¢) N Subst((a)s,b,c) if a =<h(—),(a)s, (a)s>,
Subst(a, b, c) iff { —Free(a,b) V (= Free(c,(a)z) if a = <h(V),(a)2, (a)s>,
A Subst((a)s, b, c))
0=0 otherwise.

Note that Subst has the desired property, and is well-defined by essentially
the same induction used above.
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(9) We define

—False((a)2,b) A False((a)s,b) if a =<h(—=),(a)2,(a)s>

A Form((a)2) N Form((a)s),
—False((a)2,b) if a =<h(=),(a)2> A Form((a)2),
Form(a) A () =0 otherwise.

False(a,b) iff

False is recursive by the same induction as applied above. We note the
significance of False presently.

To each b € w, we may associate a truth assignment v, such that for a prime
formula v (atomic or of the form Vxy),

w(t) = F it (8),7 = 0.

Further, for any truth assignment v : A — {T,F}, where A is a finite set of prime

formulas, there exists a b such that v = v,: we may write A = {¢1,...,¢n} such
that [¢1] < [p2] < -+ < [gn]. For 1 < j < [p,] define ¢; = 0 when j = [¢;]
for some i < n and v(p;) = F, and ¢; = 1 otherwise. Then b = <cq,... yClon] >

satisfies v, = v on A.
Then moreover, for any formula ¢ built up from A,

() =F iff wy(p)=F iff False([¢],b).
(10) Define Taut = {[o] | ois a tautology} C w.

Proof. Recall bd : w — w such that bd(a) = max{ <cy1,...,¢a > | ¢ €
{0, 1}}, recursive, has been previously defined. Define

Taut(a) iff Form(a) A VYb<(bd(a)+ 1) (—False(a,b)).
(11) AG2 ={[¢] | ¥ is in axiom group 2} C w.

Proof. Recall axiom group 2 contains formulas of the form Vxy — ¢f, with
term t substitutable for z in . Thus

AG2(a) iff Fz,y, 2<a (Vble(x) N Form(y) A Term(z) A Subst(y,x, z)
A a=<h(—=), <h(¥),z,y>, Suby,z, z)>),

where 3z, y, 2 <a P(z,y, z) abbreviates what one would expect.
(12) AG3 = {[¢] | ¢ is in axiom group 3} C w.

Proof. Recall we take axiom group 3 to be the formulas having the following
form: V(¢ — ') — (Vayp — Vay)'). Thus

AG3(a) iff Fz,y, z2<a (Vble(x) N Form(y) A Form(z)
A a=<h(—=), <h(V),z, <h(=),y,z>>,
<h(=), <h(V),z,y>, <h(V),z,z2>>>)

(13) AG4 = {[¢] | ¢ is in axiom group 4} C w.
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Proof. Recall axiom group 4 contains formulas of the form ¢ — Vz, where
x does not occur free in 1. Thus

AG4(a) iff Fz,y<a (Vble(x) A Form(y)
A —Free(y,z) N a =<h(—=),y, <h(V),z,y>>)

(14) AGS5 = {[¢] | ¢ is in axiom group 5} C w.

Proof. Recall axiom group 5 contains formulas of the form =z = z, for a
variable x, hence

AG5(a) iff 3z <a (Vble(x) A a=<h(=),z,x>).

(15) AG6 = {[¢] | ¥ is in axiom group 6} C w.

Proof. Recall formulas of axiom group 6 have the form z =y — (¢ — ¢’),
where 1) is an atomic formula and 1)’ is obtained by from % by replacing
one or more occurrences of x with y. Thus

AG6(a) iff 3z, y,b,c<a (Vble(z) N Vble(y) N AtF(b) N AtF(c)
A Th(b) = th(e) A V5 < Ih(B) + 1((e); = (8); v ((e); =y A (b), = )
A a=<h(=), <h(=),z,y>, <h(—=),b,c>>)

(16) Gen(a,b) C w?, such that Gen([¢], [¢]) if and only if ¢ is a generalization
of ¢ (i.e., ¢ =Va7...Va, for some finite {z;} C V).

Proof. Note that

a = <h(¥),(a)z, (a)s> A Vble((a)2) A Gen((a)s,b) if a > b,
Gen(a,b) iff <0 =0 if a =b,
0=1 ifa <0.

(17) A={[o] | 0 € A} C w, where A is the set of logical axioms.
Proof. Note that

A(a) iff I<a+1(Form(a) A Gen(a,b)
A (Taut(b) v AG2(b) V AG3(b) V AG4(b) vV AG5(b) V AG6(D)))

We have, to this point, defined three codings: <> on sequences of natural num-
bers, h on the language and logical symbols, and [] on the terms and formulas. We
presently define a fourth coding, of sequences of formulas:

[ : {sequences of L-formulas} — w,

given by
”@1""a§0nﬂ :<’7901—|""a’790n—|>'
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This map is one-to-one, as it is derived from the established (injective) codings,
and in particular, we can determine, for a given number, if it lies in the image of
[T, and, if so, recover the associated sequence of formulas.

Definition. Given £, let T be a theory (a collection of sentences) in £. Define
T=A{[c] | oceT}.
We say that T' is axiomatizable if there exists a theory S, axiomatizing T' (that

is, such that Cn .S = CnT), such that S is recursive. We say that T is decidable
if CnT is recursive.

We shall make use of the following relations:
o Dedr = {[1,---s0nll | p1,---,¢n is a deduction from T} C w.

Note that
Dedy(a) iff Seg(a) A Ih(a) #0
AV <Ih(a) (A((a)j+1) VI ((@)j41) Vi, k<j+1((a)k+1 =<h(=),(a)it1, (a)jt1>))

e Prfy Cw?, given by Prfp(a,b) iff Dedr(b) A a= (b))
o Pfr Cw, given by Pfp(a) iff Sent(a) A 3xPrfr(a,x).
Note that we may read Prfr(a,b) as “b is a proof of a from T,” and Pfr(a) as
“a is a sentence provable from T.” In particular

Pfr=CnT ={[o] | T+ o}.
We use this fact to prove the following:
Theorem. If T is aziomatizable, then Pfr = CnT is recursively enumerable.

Proof. Let S axiomatize T', where S is recursive. From the above definitions, we
see that Deds and Prfg are recursive relations, hence Pfg is an r.e. relation. But
Pfy = Pfp, since Cn S =CnT.

Theorem. IfT is axiomatizable and complete in L, then T is decidable.

Proof. By the negation theorem, it suffices to show that —Pf is recursively enu-
merable. Note that since T is complete, for any sentence o, T' ¥ o if and only if
TF —o. Hence
= Pfr(a) iff =Sent(a) V ImPri ( <h(—),a>,m)
iff Im(=Sent(a) V Prip( <h(=),a>,m)).

Thus = Pfy is recursively enumerable, and Pf; is recursive.

We can see that if we say 7' is axiomatizable in wider sense when S axiomatiz-
ing T is recursively enumerable, then the above two theorems still hold with this
seemingly weaker notion. In fact, two notions are equivalent, which is known as
Craig’s Theorem.

Step 3: The Incompleteness Theorems and Other Results

We return now to the language of natural numbers, L. Recall that we define,
for a natural number n,
n=55...50.
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Definition. The diagonalization of an L formula ¢ is a new formula

d(p) = Fvo(vo = [¢] A @),

where 3 and A provide the usual abbreviations in L.

In particular, we note d(y) is satisfiable precisely when ¢ is satisfiable by some
truth assignment taking vy to the Godel number of ¢, and Ly = d(¢) precisely
when ¢ is satisfied by every truth assignment taking vg to [¢].

Lemma. There exists a recursive function dg : w — w such that for any Ly
formula, dg([¢]) = [d(¥)].

Proof. Define num : w — w by num(0) = <0> and, for n € w
num(n + 1) = <h(S), num(n) > .

In particular, note that num(n) = [n].
Define

dg(a) = <h(_‘)v <h(V), [UO-" <h(_‘)7
<h(=), <h(—=), <h(=), [vo],num(a) >, <h(=),a>>>>>>
Then

dg([p]) = <h(=), <h(¥), [vo], <h(-),
<h(=), <h(—=), <h(=),vo], num([]) >, <h(=), [@]>>>>>>,
= <h(=), <h(V),[vo], <h(-),
<h(—), <h(=), <h(=), [vo], [[e]]>, <h(7), [@]>>>>>> .

However, writing out what formula this encodes and introducing our usual abbre-
viations, we have

dg([e]) = [~Yvo=(=(vo = [] = =¢))]
= [Fuo(vo = [¢] A ¥)]
= [d(¢)],

as desired.

Fixed Point Theorem (Godel). For any Ln-formula p(z) (i.e., either a sentence

or a formula having x as the only free variable), there is some L -sentence o such
that

QF o o([o]).

Proof. Since dg is recursive, it is representable in @ by Step 1, say by ¥ (z,y). Then
QFVYy(¥(n,y) «— y = dg(n)).

Let §(vo) = Jy(¢(vo,y) A ©(y)), and let n = fd(vmeﬁne
o =d(0(vg)) = Fvg(vg =n A §(vp)).
Then if we let k = dg(n) = [0, we have

Eo+—dn) +— Jy(ny) A o).

But



20 LECTURES BY B. KIM

and therefore

QFo+—3yly=k N p(y) < p(k) < »([a]),

as required.

Tarski Undefinability Theorem. ThN = {[o] | N |= o} is not definable.

Proof. Suppose ThN were definable by S(z). Then by the fixed point lemma, with
@ = =3, there exists a sentence ¢ such that

N o < ~B([o]).

Then N |= o implies that N = 3([o]), implying N = o, or N = =0, since Th N
is complete. On the other hand, N }£ o implies N | -0, and thus that N |=
B([o]), implying N |= 0. The contradictions together imply that S cannot represent

ThN.

Strong Undecidability of Q. Let T be a theory in L D L. If TUQ is consistent
in L, then T is not decidable in L (CnT is not recursive).

Proof. Assume that CnT is recursive. We first show that this implies recursiveness
of Cn(T'U Q). Since @ is finite, it suffices to show that for any sentence 7 in the
language, Cn(T U {7}) is recursive.

In particular, note that o € Cn(T'U{7}) iff 7 - o € CnT. Thus

a € Cn(TU{r}) it Sent(a) N <h(—),[7],a>€ CnT.

Hence Cn(T U {7}) is recursive, as desired.

To prove the theorem, then, it suffices to show that Cn(7 U Q) is not recursive.
If this were the case, then it would be representable, say by f(z), in @. By the
fixed point lemma, there exists an Ly sentence o such that

QF o+ =p([a]).
fTUQF o, then
Q'+ B(a]),
by the representability of Cn(7T'U Q) by S(z) in Q. In particular,
QF o,
a contradiction. On the other hand, if T'U @Q ¥ o, then by representability,
Q'+ -B([a]),
and hence
QFro,

a contradiction, implying that Cn(7' U @) is not representable, and hence not re-
cursive.

Corollary. ThN, PA, and Q are all undecidable.
Proof. We need note only that each of these theories is consistent with Q.

Moreover, we have:
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Undecidability of First Order Logic (Church). For a reasonable countable
language £ D L, the set of all Godel numbers of valid sentences ({[o] | O F o})
is not recursive (the set of valid sentences is not decidable).

In fact, the above corollary is true for any countable £ containing a k-ary pred-
icate or function symbol, k > 2, or at least two unary function symbols.

Godel-Rosser First Incompleteness Theorem. If T is a theory in a countable
reasonable L O Loy, with T U Q consistent and T azxiomatizable, then T is not
complete.

Proof. By Step 2, if T' is complete, then T is decidable, contradicting the strong
undecidability of Q.

Remarks. In (N, +), 0, <, and S are definable. Hence the same result follows if we
take L = {+, -} instead of our usual L. In particular, Th(N,+, ) is undecidable,
and for any 7" D Q' (where Q' is simply @ written in the language of £/), we have
that T” is, if consistent, undecidable, and, if axiomatizable, incomplete.

It is important to note that for an undecidable theory T, we may have T' C T",
where T is a decidable theory. As an example, the theory of groups is undecidable,
whereas the theory of divisible torsion-free groups is decidable.

We turn our attention now to the proof of the result used in Godel’s original
paper. In particular, Godel worked in the model (N,+,-,0,<, E). (Note that E,
exponentiation, is definable in (N, +,+,0, <), or, equivalently, (N, +,)).

Let T D @ be a consistent theory in a reasonable countable language £ O Ly,
and presume that T is recursive. Then

THo=QF Pfr([o]).

In particular, T' F o implies that Prfy([o], m) for some m € w. Since Prfy is

recursive, it is representable in @, hence Q F Prf,([o],m), and

Q= JxPrfp([o], =),

or

QF Pfr([o])-

By the fixed point lemma, there exists a sentence a such that

TDO>QF a+— —Plr([a]). (*)

If T+ «, then Q F Pfr([a]), and thus Q F -, and hence T F —a, a contradiction.
Thus T' ¥ o. o

On the other hand, if T is w-consistent (i.e., whenever T' F Jze(z), then for
some n € w, T ¥ —p(n)), then T ¥ —«. In particular, if T —a, then

T+ PfT(M)a
by (x). That is,
T+ 3xPrip([a], z).

However, if Prf;([a],m) for some m € w, then T F «, contradicting the consis-

tency of T. Thus we must have = Prf,([a],m) for all m € w. Since @Q represents

Prfr, o
TOQF ﬁPrfT(m, m)
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for all m € w, contradicting the w-consistency of T.
Rosser generalized Godel’s proof by singling out for T a sentence « such that
T ¥ « and T ¥ —«, without the assumption of w-consistency.

We now begin our approach to Gédel’s Second Incompleteness Theorem. We fix
T, a theory in a countable reasonable language £ D L.

We note the following fact from Hilbert and Bernays’ Grundlagen der Mathe-
matik, 1934.

Fact. If T is consistent, T+ PA, and T is recursive, then for any sentences o and
din L,

L Tto=QF Pfp(lo])
IL. PAE (Pfp([o]) A Pfr([o = 61)) = Pfr([0])

L PA+ Pf([o]) > Py ([Pfr([2])])

Notation. We will write Conyp = —Pfp([0 # 0]). Clearly Cony holds if and only
if T is consistent.

Lemma. If T o — §, then PAF Pfr([o]) — Pfp([d]).

Proof. f T+ o — 4, then by (I) above,
PA+ Pfp([o = §]),

and by (II),
Y PAF Pfp([a]) = Plr([6]).

Godel’s Second Incompleteness Theorem. If T is consistent, T is recursive,
and T = PA, then T ¥ Conr.

Proof. By the fixed point lemma, there exists o such that
QF o «— ~Pfp([o]). (1)
By (III), above,
PAF Pfr([o]) = Pty (TPF([o])]) - (*)
And further, by Lemma, we have
PA+ Plp (TPfr([o1)]) = Ple([=o]).
Combining this result with (), we have

PAE Pfp([o]) = Pfr([-o]).
Now note that - = +— (0 — (0 # 0)). By the lemma,
PAF Pfp([o]) = Pfp([o = (0 #0)]).
In particular,
PAF Pfp([o]) = Pir([o]) A Pir([o = (0 # 0)]),

hence, by (II),
PA Pfp([a]) = Pfp(J0 # 0]),



COMPLETE PROOFS OF GODEL’S INCOMPLETENESS THEOREMS 23

ie.
PA® Pfp([a]) = —Conr.
Thus PA+ Conr — o, by (7).
Now, suppose that 7' Cong. Then T - o, and hence by (I), T' > Q = Pfp([o]).
But again, by (f), this implies that T'F —c, a contradiction, showing that T cannot
prove its own consistency.

We remark that one may carry the proof through using only the assumption that
T is recursively enumerable.

Lob’s Theorem. Suppose T is a consistent theory in L O Lo, such that T re-
cursive, and T & PA. Then for any L-sentence o, if T & Pfp([o]) — o, then
TkHo. -

Proof. By the fixed point lemma, there exists ¢ such that
QF §+— (Pfp([d]) — o).

Since T'+ PA D @, T proves the same result. From this we may deduce that
PAE Pfr([6]) — Pfr([o]).

In particular, by our lemma, we have

PA Pir([81) ~ Pl ([Ph([8]) — 1)

and, combining this with (IIT) from above,

PA+ Pfp([81) = Plr (TPf([8DT) A Phr (TPA([6]) = 1)
and thus, by (II),

PA+ Pf([6]) — Pfr([o]),

as desired.
Now assume that 7'+ Pfr([o]) — o. Then, by the above,

T+ Pfp([6]) — o.

By our choice of ¢, this in turn implies that 7'+ 6. By (I), we have that Q F
Pfr([d1), and hence T proves the same result, implying that T F o, as desired.

Remark. Godel’s Second Incompleteness Theorem in fact follows from Lob’s The-
orem. In particular, given T" as in the hypotheses of both theorems, if T+ Conrp,
then

T+ Pfr(J0#£0]) = 0#0.

But by Lob’s Theorem, this in turn implies that 7' F 0 # 0, showing that such a
theory, if consistent, cannot prove its own consistency.
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