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A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation ascRPCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified theliest in a general theory of communication. A
basis for such a theory is contained in the important pagfeyquist! and Hartley on this subject. In the
present paper we will extend the theory to include a numbeeeffactors, in particular the effect of noise
in the channel, and the savings possible due to the statistizicture of the original message and due to the
nature of the final destination of the information.
The fundamental problem of communication is that of repoinly at one point either exactly or ap-
proximately a message selected at another point. Fregubetinessages haweeaning that is they refer
to or are correlated according to some system with certaysipal or conceptual entities. These semantic
aspects of communication are irrelevant to the engineg@rialglem. The significant aspect is that the actual
message is ongelected from a sedf possible messages. The system must be designed to ofmerateh
possible selection, not just the one which will actually besen since this is unknown at the time of design.
If the number of messages in the set is finite then this numb&mymonotonic function of this number
can be regarded as a measure of the information produced evfemessage is chosen from the set, all
choices being equally likely. As was pointed out by Hartleg tmost natural choice is the logarithmic
function. Although this definition must be generalized édaesbly when we consider the influence of the
statistics of the message and when we have a continuous cdmgessages, we will in all cases use an
essentially logarithmic measure.
The logarithmic measure is more convenient for variousaests

1. Itis practically more useful. Parameters of engineeinmgortance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm b&tnumber of possibilities. For example,
adding one relay to a group doubles the number of possiltlesstfithe relays. It adds 1 to the base 2
logarithm of this number. Doubling the time roughly squattess number of possible messages, or
doubles the logarithm, etc.

2. Itis nearer to our intuitive feeling as to the proper meastihis is closely related to (1) since we in-
tuitively measures entities by linear comparison with camnratandards. One feels, for example, that
two punched cards should have twice the capacity of one forrimation storage, and two identical
channels twice the capacity of one for transmitting infotiora

3. It is mathematically more suitable. Many of the limitingesations are simple in terms of the loga-
rithm but would require clumsy restatement in terms of theber of possibilities.

The choice of a logarithmic base corresponds to the choieeunfit for measuring information. If the
base 2 is used the resulting units may be called binary digitsnore brieflybits, a word suggested by
J. W. Tukey. A device with two stable positions, such as ayrefaa flip-flop circuit, can store one bit of
information.N such devices can stokebits, since the total number of possible stateg'is@d log 2N = N.

If the base 10 is used the units may be called decimal digiteeS

log, M =log;oM/l0g;2
= 3.32log oM,
INyquist, H., “Certain Factors Affecting Telegraph Spedggll System Technical Journadpril 1924, p. 324; “Certain Topics in

Telegraph Transmission Theor:l.E.E. Trans.y. 47, April 1928, p. 617.
2Hartley, R. V. L., “Transmission of InformationBell System Technical Journal,ly 1928, p. 535.
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Fig. 1—Schematic diagram of a general communication system

a decimal digit is about—?bits. A digit wheel on a desk computing machine has ten stabditions and
therefore has a storage capacity of one decimal digit. lfytoal work where integration and differentiation
are involved the baseis sometimes useful. The resulting units of information Wé called natural units.
Change from the baseto baseb merely requires multiplication by Ig@.

By a communication system we will mean a system of the typeatdd schematically in Fig. 1. It
consists of essentially five parts:

1.

5.

Aninformation sourcavhich produces a message or sequence of messages to be cieateuito the
receiving terminal. The message may be of various typesA &@quence of letters as in a telegraph
of teletype system; (b) A single function of timfgt) as in radio or telephony; (c) A function of
time and other variables as in black and white television e ltiee message may be thought of as a
function f (x,y,t) of two space coordinates and time, the light intensity ahp@d,y) and timet on a
pickup tube plate; (d) Two or more functions of time, ddy), g(t), h(t) — this is the case in “three-
dimensional” sound transmission or if the system is intérdeservice several individual channels in
multiplex; (e) Several functions of several variables —afoc television the message consists of three
functionsf(x,y,t), g(x,y,t), h(x,y,t) defined in a three-dimensional continuum — we may also think
of these three functions as components of a vector field defin¢he region — similarly, several
black and white television sources would produce “messagmssisting of a number of functions
of three variables; (f) Various combinations also occur,eample in television with an associated
audio channel.

. A transmitterwhich operates on the message in some way to produce a sigitedls for trans-

mission over the channel. In telephony this operation atssnerely of changing sound pressure
into a proportional electrical current. In telegraphy wedan encoding operation which produces
a sequence of dots, dashes and spaces on the channel codiagpo the message. In a multiplex
PCM system the different speech functions must be samptedpessed, quantized and encoded,
and finally interleaved properly to construct the signal.cafber systems, television and frequency
modulation are other examples of complex operations agpppdi¢ghe message to obtain the signal.

. Thechannelis merely the medium used to transmit the signal from tratientio receiver. It may be

a pair of wires, a coaxial cable, a band of radio frequenaidégam of light, etc.

. Thereceiverordinarily performs the inverse operation of that done lgyttansmitter, reconstructing

the message from the signal.

Thedestinations the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving camitation systems. To do this it is first
necessary to represent the various elements involved d&matical entities, suitably idealized from their



physical counterparts. We may roughly classify commuidcatystems into three main categories: discrete,
continuous and mixed. By a discrete system we will mean omehich both the message and the signal
are a sequence of discrete symbols. A typical case is tgdkgnrahere the message is a sequence of letters
and the signal a sequence of dots, dashes and spaces. Auomistsystem is one in which the message and
signal are both treated as continuous functions, e.g.o radielevision. A mixed system is one in which
both discrete and continuous variables appear, e.g., P&hnrission of speech.

We first consider the discrete case. This case has applisatiot only in communication theory, but
also in the theory of computing machines, the design of lelap exchanges and other fields. In addition
the discrete case forms a foundation for the continuous d@relcdhcases which will be treated in the second
half of the paper.

PART I: DISCRETE NOISELESS SYSTEMS

1. THE DISCRETENOISELESSCHANNEL

Teletype and telegraphy are two simple examples of a descteinnel for transmitting information. Gen-
erally, a discrete channel will mean a system whereby a seguaf choices from a finite set of elementary
symbolsS, ..., S, can be transmitted from one point to another. Each of the s{githis assumed to have
a certain duration in timg seconds (not necessarily the same for diffeignfor example the dots and
dashes in telegraphy). It is not required that all possibtpiences of th&§ be capable of transmission on
the system; certain sequences only may be allowed. Thekbeniossible signals for the channel. Thus
in telegraphy suppose the symbols are: (1) A dot, consistitige closure for a unit of time and then line
open for a unit of time; (2) A dash, consisting of three timé&siof closure and one unit open; (3) A letter
space consisting of, say, three units of line open; (4) A vempate of six units of line open. We might place
the restriction on allowable sequences that no spacesfelieh other (for if two letter spaces are adjacent,
it is identical with a word space). The question we now comsid how one can measure the capacity of
such a channel to transmit information.

In the teletype case where all symbols are of the same daoratiad any sequence of the 32 symbols
is allowed the answer is easy. Each symbol represents figebihformation. If the system transmits
symbols per second it is natural to say that the channel hapacity of  bits per second. This does not
mean that the teletype channel will always be transmittiigrmation at this rate — this is the maximum
possible rate and whether or not the actual rate reachesithisnum depends on the source of information
which feeds the channel, as will appear later.

In the more general case with different lengths of symbots@mstraints on the allowed sequences, we
make the following definition:

Definition: The capacitf of a discrete channel is given by
C=Lim M
T—oo T
whereN(T) is the number of allowed signals of duratidn

Itis easily seen that in the teletype case this reduces torthaous result. It can be shown that the limit
in question will exist as a finite number in most cases of gger Suppose all sequences of the symbols
Si,..., S are allowed and these symbols have duratigns. ,t,. What is the channel capacity? Nft)
represents the number of sequences of duratiosm have

N(t) = N(t —t1) + N(t —t2) + -+ N(t — tn).

The total number is equal to the sum of the numbers of seqeesmding inS,S,, ..., S, and these are
N(t —t1),N(t —t2),...,N(t —ty), respectively. According to a well-known result in finitdfdrencesN(t)

Y Y

is then asymptotic for largeto X whereXg is the largest real solution of the characteristic equation

XMypxty. . px =1



and therefore
C = logXo.

In case there are restrictions on allowed sequences we ajftsh obtain a difference equation of this
type and findC from the characteristic equation. In the telegraphy casatiored above

N(t) = N(t —2) + N(t — 4) + N(t— 5) + N(t — 7) + N(t — 8) + N(t — 10)

as we see by counting sequences of symbols according togherlaext to the last symbol occurring.
HenceC is —log o wherey is the positive root of = u? + p* + p® + u” + p8 + 0. Solving this we find
C =0.539.

A very general type of restriction which may be placed onvedld sequences is the following: We
imagine a number of possible statasay, ..., am. For each state only certain symbols from theet. ., S,
can be transmitted (different subsets for the differertesja When one of these has been transmitted the
state changes to a new state depending both on the old sththeparticular symbol transmitted. The
telegraph case is a simple example of this. There are twesstitpending on whether or not a space was
the last symbol transmitted. If so, then only a dot or a dashbeasent next and the state always changes.
If not, any symbol can be transmitted and the state changespéce is sent, otherwise it remains the same.
The conditions can be indicated in a linear graph as showigin2= The junction points correspond to the
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Fig. 2—Graphical representation of the constraints orgtalgh symbols.

states and the lines indicate the symbols possible in aataltéhe resulting state. In Appendix 1 it is shown
that if the conditions on allowed sequences can be descirbibis formC will exist and can be calculated
in accordance with the following result:

Theorem 1:Let bi(-s) be the duration of the" symbol which is allowable in stateand leads to statp
Then the channel capacf®yis equal tdogW wheréW is the largest real root of the determinant equation:

(s)
ZW_bij — dij ‘ =0
S

wheredij = 1 if i = j and is zero otherwise.
For example, in the telegraph case (Fig. 2) the determigant i

-1 W-2+wW) |
W=3+W=8) (W24+w4-1)~ ™~

On expansion this leads to the equation given above for #ss.c

2. THE DISCRETESOURCE OFINFORMATION

We have seen that under very general conditions the logadftihe number of possible signals in a discrete
channel increases linearly with time. The capacity to tmibgformation can be specified by giving this
rate of increase, the number of bits per second requiredacifgpthe particular signal used.

We now consider the information source. How is an infornrasiource to be described mathematically,
and how much information in bits per second is produced irvargsource? The main point at issue is the
effect of statistical knowledge about the source in redyitiie required capacity of the channel, by the use



of proper encoding of the information. In telegraphy, foample, the messages to be transmitted consist of
sequences of letters. These sequences, however, are naetaignrandom. In general, they form sentences
and have the statistical structure of, say, English. Ther& occurs more frequently than Q, the sequence
TH more frequently than XP, etc. The existence of this stmecallows one to make a saving in time (or
channel capacity) by properly encoding the message segsiémo signal sequences. This is already done
to a limited extent in telegraphy by using the shortest ckasymbol, a dot, for the most common English
letter E; while the infrequent letters, Q, X, Z are represdriy longer sequences of dots and dashes. This
idea is carried still further in certain commercial codessvehcommon words and phrases are represented
by four- or five-letter code groups with a considerable sgwinaverage time. The standardized greeting
and anniversary telegrams now in use extend this to the pbericoding a sentence or two into a relatively
short sequence of numbers.

We can think of a discrete source as generating the messagkokby symbol. It will choose succes-
sive symbols according to certain probabilities dependimgeneral, on preceding choices as well as the
particular symbols in question. A physical system, or a ma#tical model of a system which produces
such a sequence of symbols governed by a set of probabilgiksown as a stochastic procés¥ve may
consider a discrete source, therefore, to be representadtnchastic process. Conversely, any stochastic
process which produces a discrete sequence of symbolsthosea finite set may be considered a discrete
source. This will include such cases as:

1. Natural written languages such as English, German, Gaine

2. Continuous information sources that have been rendasedete by some quantizing process. For
example, the quantized speech from a PCM transmitter, oaatued television signal.

3. Mathematical cases where we merely define abstractlychastic process which generates a se-
guence of symbols. The following are examples of this Igsé tyf source.

(A) Suppose we have five letters A, B, C, D, E which are choseh ®éth probability .2, successive
choices being independent. This would lead to a sequencdichwhe following is a typical
example.

BDCBCECCCADCBDDAAECEEA
ABBDAEECACEEBAEECBCEAD.

This was constructed with the use of a table of random nunfbers

(B) Using the same five letters let the probabilities be .4,21.2, .1, respectively, with successive
choices independent. A typical message from this sourdeis t
AAACDCBDCEAADADACEDA
EADCABEDADDCECAAAAAD.

(C) A more complicated structure is obtained if successyalmls are not chosen independently
but their probabilities depend on preceding letters. Indinegplest case of this type a choice
depends only on the preceding letter and not on ones befate Tihe statistical structure can
then be described by a set of transition probabilifi€$), the probability that letteris followed
by letterj. The indices andj range over all the possible symbols. A second equivalentofiay
specifying the structure is to give the “digram” probalektp(i, j), i.e., the relative frequency of
the digrami j. The letter frequencigy(i), (the probability of letter), the transition probabilities

3See, for example, S. Chandrasekhar, “Stochastic Probleikyisics and AstronomyReviews of Modern Physics 15, No. 1,

January 1943, p. 1.
4Kendall and SmithTables of Random Sampling NumbeZambridge, 1939.



pi(j) and the digram probabilitig(i, j) are related by the following formulas:
p(i) =3 p(i.j) =3 p(,i) = p(i)pj()
p(i,j)=r;(i)pi(j) | |
Zpi(j) = IZlO(i) =3 p(i,j) =1

I)J

As a specific example suppose there are three letters A, BtfCtlné probability tables:

pi)| ] e ) j
A B C A B C

AR LI A I S O
Clz 5 Clx Cler 13 13

A typical message from this source is the following:

ABBABABABABABABBBABBBBBABABABABABBBACACAB
BABBBBABBABACBBBABA.

The next increase in complexity would involve trigram frequaies but no more. The choice of
a letter would depend on the preceding two letters but nohemtessage before that point. A
set of trigram frequencieg(i, j, k) or equivalently a set of transition probabilitipg (k) would
be required. Continuing in this way one obtains successivelre complicated stochastic pro-
cesses. In the genenmalgram case a set @Fgram probabilitie(i1, iz, .. .,in) or of transition
probabilitiespi, i,....i,_, (in) iS required to specify the statistical structure.

(D) Stochastic processes can also be defined which produegt &dnsisting of a sequence of
“words.” Suppose there are five letters A, B, C, D, E and 16 t4gdrin the language with
associated probabilities:

J10A .16 BEBE .11 CABED .04 DEB
.04 ADEB .04 BED .05 CEED .15 DEED
.05 ADEE .02BEED .08 DAB .01 EAB
.01 BADD .05CA .04 DAD .05 EE

Suppose successive “words” are chosen independently arsbparated by a space. A typical
message might be:

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE BEBE BEBE ADEE BED HD
DEED CEED ADEE A DEED DEED BEBE CABED BEBE BED DAB DEED ADEB.

If all the words are of finite length this process is equivatenone of the preceding type, but
the description may be simpler in terms of the word structuré@ probabilities. We may also
generalize here and introduce transition probabilitiea/ben words, etc.

These artificial languages are useful in constructing gnmmpbblems and examples to illustrate vari-
ous possibilities. We can also approximate to a naturaldagg by means of a series of simple artificial
languages. The zero-order approximation is obtained bggihg all letters with the same probability and
independently. The first-order approximation is obtaingatmoosing successive letters independently but
each letter having the same probability that it has in themahtanguagé. Thus, in the first-order ap-
proximation to English, E is chosen with probability .12 (ftequency in normal English) and W with
probability .02, but there is no influence between adjacett¢is and no tendency to form the preferred

5 etter, digram and trigram frequencies are giveS@tret and Urgerty Fletcher Pratt, Blue Ribbon Books, 1939. Word frequen-
cies are tabulated iRelative Frequency of English Speech Sou@d€)ewey, Harvard University Press, 1923.



digrams such as TH, ED, etc. In the second-order approxamatiigram structure is introduced. After a
letter is chosen, the next one is chosen in accordance vétlréiguencies with which the various letters
follow the first one. This requires a table of digram freques@i(j). In the third-order approximation,
trigram structure is introduced. Each letter is chosen witibabilities which depend on the preceding two
letters.

3. THE SERIES OFAPPROXIMATIONS TOENGLISH

To give a visual idea of how this series of processes appesalanguage, typical sequences in the approx-
imations to English have been constructed and are givembéhoall cases we have assumed a 27-symbol
“alphabet,” the 26 letters and a space.

1. Zero-order approximation (symbols independent andpeqbable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZA®IBZL-
HJQD.

2. First-order approximation (symbols independent buthfrigquencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTVA
NAH BRL.

3. Second-order approximation (digram structure as inighpg|

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVETU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in Esigl.

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEONS-
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

5. First-order word approximation. Rather than continugawétragram,.. , n-gram structure it is easier
and better to jump at this point to word units. Here words dm@sen independently but with their
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENNAT-
URAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNHKES
THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation. The word transitiavbpbilities are correct but no further struc-
ture is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETRIS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

The resemblance to ordinary English text increases quttegably at each of the above steps. Note that
these samples have reasonably good structure out to abioatttve range that is taken into account in their
construction. Thus in (3) the statistical process insueaswonable text for two-letter sequences, but four-
letter sequences from the sample can usually be fitted irid gentences. In (6) sequences of four or more
words can easily be placed in sentences without unusualainstl constructions. The particular sequence
of ten words “attack on an English writer that the charactéhnis” is not at all unreasonable. It appears then
that a sufficiently complex stochastic process will givetisézctory representation of a discrete source.

The first two samples were constructed by the use of a booknafora numbers in conjunction with
(for example 2) a table of letter frequencies. This methoghthhave been continued for (3), (4) and (5),
since digram, trigram and word frequency tables are aMailddut a simpler equivalent method was used.



To construct (3) for example, one opens a book at random deactse letter at random on the page. This
letter is recorded. The book is then opened to another padj@r@a reads until this letter is encountered.
The succeeding letter is then recorded. Turning to anothge phis second letter is searched for and the
succeeding letter recorded, etc. A similar process was iosgd), (5) and (6). It would be interesting if
further approximations could be constructed, but the labarived becomes enormous at the next stage.

4. GRAPHICAL REPRESENTATION OF AMARKOFF PROCESS

Stochastic processes of the type described above are knatfrematically as discrete Markoff processes
and have been extensively studied in the literafufithe general case can be described as follows: There
exist a finite number of possible “states” of a syst&n,,...,S,. In addition there is a set of transition
probabilities; pi(j) the probability that if the system is in stafeit will next go to stateS;. To make this
Markoff process into an information source we need only m&sthat a letter is produced for each transition
from one state to another. The states will correspond torésidue of influence” from preceding letters.

The situation can be represented graphically as shown & Bigt and 5. The “states” are the junction

Fig. 3—A graph corresponding to the source in example B.

points in the graph and the probabilities and letters preddior a transition are given beside the correspond-
ing line. Figure 3 is for the example B in Section 2, while Fgcorresponds to the example C. In Fig. 3

Fig. 4—A graph corresponding to the source in example C.

there is only one state since successive letters are indepern Fig. 4 there are as many states as letters.
If a trigram example were constructed there would be at mbstates corresponding to the possible pairs
of letters preceding the one being chosen. Figure 5 is a goaphe case of word structure in example D.
Here S corresponds to the “space” symbol.

5. ERGODIC AND MIXED SOURCES

As we have indicated above a discrete source for our purg@sede considered to be represented by a
Markoff process. Among the possible discrete Markoff psses there is a group with special properties
of significance in communication theory. This special clesssists of the “ergodic” processes and we
shall call the corresponding sources ergodic sourcesoAgh a rigorous definition of an ergodic process is
somewhatinvolved, the generalidea is simple. In an ergudicess every sequence produced by the process

6For a detailed treatment see M. Fréchidéthode des fonctions arbitraires. Théorie des évéamsnen chaine dans le cas d’'un
nombre fini d’états possible®aris, Gauthier-Villars, 1938.



is the same in statistical properties. Thus the letter feegies, digram frequencies, etc., obtained from
particular sequences, will, as the lengths of the sequeincesase, approach definite limits independent
of the particular sequence. Actually this is not true of gu@quence but the set for which it is false has
probability zero. Roughly the ergodic property meanssiail homogeneity.

All the examples of artificial languages given above are @igadl his property is related to the structure
of the corresponding graph. If the graph has the following propertie$ the corresponding process will
be ergodic:

1. The graph does not consist of two isolated parts A and B thattit is impossible to go from junction
points in part A to junction points in part B along lines of tig@ph in the direction of arrows and also
impossible to go from junctions in part B to junctions in part

2. Aclosed series of lines in the graph with all arrows on thed pointing in the same orientation will
be called a “circuit.” The “length” of a circuit is the numbafrlines in it. Thus in Fig. 5 series BEBES
is a circuit of length 5. The second property required is thagreatest common divisor of the lengths
of all circuits in the graph be one.

Fig. 5—A graph corresponding to the source in example D.

If the first condition is satisfied but the second one violdtgthaving the greatest common divisor equal
tod > 1, the sequences have a certain type of periodic structimevarious sequences fall indadifferent
classes which are statistically the same apart from a shifteoorigin (i.e., which letter in the sequence is
called letter 1). By a shift of from 0 up td — 1 any sequence can be made statistically equivalent to any
other. A simple example witd = 2 is the following: There are three possible lettayb,c. Lettera is
followed with eitherb or c with probabilities% and% respectively. Eitheb or c is always followed by letter
a. Thus a typical sequence is

abacacacabacababacac

This type of situation is not of much importance for our work.

If the first condition is violated the graph may be separatéala set of subgraphs each of which satisfies
the first condition. We will assume that the second condisalso satisfied for each subgraph. We have in
this case what may be called a “mixed” source made up of a nuaflpeire components. The components
correspond to the various subgraphd.4fLy, L3, ... are the component sources we may write

L= piL1+ polo+ pslz+---

"These are restatements in terms of the graph of condities @i Fréchet.



wherep; is the probability of the component sourge

Physically the situation represented is this: There arersédifferent sourcek;, L, Ls,... which are
each of homogeneous statistical structure (i.e., they rgede). We do not knova priori which is to be
used, but once the sequence starts in a given pure complgnéntontinues indefinitely according to the
statistical structure of that component.

As an example one may take two of the processes defined abdwesanmep; = .2 andp, = .8. A
sequence from the mixed source

L=.2L;+.8Ly

would be obtained by choosing fiilst or L, with probabilities .2 and .8 and after this choice genegatin
sequence from whichever was chosen.

Except when the contrary is stated we shall assume a soubeseiodic. This assumption enables one
to identify averages along a sequence with averages oventienble of possible sequences (the probability
of a discrepancy being zero). For example the relative faqy of the letter A in a particular infinite
sequence will be, with probability one, equal to its relatikequency in the ensemble of sequences.

If B is the probability of stateandp;(j) the transition probability to statg then for the process to be
stationary it is clear that the must satisfy equilibrium conditions:

P =3 Rpi()).

In the ergodic case it can be shown that with any starting itiond the probabilitie®;(N) of being in state
j afterN symbols, approach the equilibrium valued\ass c.

6. CHOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markcess. Can we define a quantity which
will measure, in some sense, how much information is “prediiby such a process, or better, at what rate
information is produced?

Suppose we have a set of possible events whose probabilit@scurrence ar@;, pz,...,pn. These
probabilities are known but that is all we know concerningalitevent will occur. Can we find a measure
of how much “choice” is involved in the selection of the evenbf how uncertain we are of the outcome?

If there is such a measure, sdyp1, p2, - .., Pn), it is reasonable to require of it the following properties:

1. H should be continuous in thg.

2. If all the p; are equalp; = % thenH should be a monotonic increasing functionnofWith equally
likely events there is more choice, or uncertainty, whemela@e more possible events.

3. If a choice be broken down into two successive choicesptiggnal H should be the weighted sum
of the individual values oH. The meaning of this is illustrated in Fig. 6. At the left wevhdhree

1/2 " 1/2
1/3
2/3
s > 1/3
1/3™1/6

Fig. 6—Decomposition of a choice from three possibilities.

possibilitiesp; = 3, p2 = 3, ps = 2. On the right we first choose between two possibilities eait w
probability%, and if the second occurs make another choice with prohiabiﬁ, % The final results
have the same probabilities as before. We require, in tleisiapcase, that

H(3:3:3) =H(G 2 +3HGE ).

The coefficiem% is because this second choice only occurs half the time.

10



In Appendix 2, the following result is established:
Theorem 2: The onlyH satisfying the three above assumptions is of the form:

n
H=-K pilogpi
i; i i

whereK is a positive constant.

This theorem, and the assumptions required for its proefirano way necessary for the present theory.
Itis given chiefly to lend a certain plausibility to some ofrdater definitions. The real justification of these
definitions, however, will reside in their implications.

Quantities of the forn = —3 pilog pi (the constanK merely amounts to a choice of a unit of measure)
play a central role in information theory as measures ofrmétion, choice and uncertainty. The formtbf
will be recognized as that of entropy as defined in certaimfdations of statistical mechanfowherep; is
the probability of a system being in c&lbf its phase space is then, for example, thel in Boltzmann'’s
famousH theorem. We shall cali = —  p;logp; the entropy of the set of probabilitigs, . .., pa. If Xis a
chance variable we will writél (x) for its entropy; thus is not an argument of a function but a label for a
number, to differentiate it froril (y) say, the entropy of the chance variaple

The entropy in the case of two possibilities with probateitipp andg = 1 — p, namely

H = —(plogp+qlogq)

is plotted in Fig. 7 as a function gf.

1.0
0 yd AN
8

BITS z 7 \

o 1 2 3 4 5 6 7 8 9 10
p

Fig. 7—Entropy in the case of two possibilities with probiigis p and(1— p).

The quantityH has a number of interesting properties which further sulbistize it as a reasonable
measure of choice or information.

1. H = 0if and only if all thep; but one are zero, this one having the value unity. Thus onlgnuke
are certain of the outcome dolsvanish. Otherwisél is positive.

2. For a givem, H is a maximum and equal to legwhen all thep; are equal (i.e.%). This is also
intuitively the most uncertain situation.

8See, for example, R. C. TolmaRrinciples of Statistical Mechanic€xford, Clarendon, 1938.
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3. Suppose there are two evemtandy, in question withm possibilities for the first and for the second.
Let p(i, j) be the probability of the joint occurrenceidbr the first andj for the second. The entropy of the
joint event is

Z p(i, j) logp(i,
while

ij IogZp

p(i, Iogzp
]

It is easily shown that
H(xy) <H(X) +H(y)

with equality only if the events are independent (igi, j) = p(i)p(j)). The uncertainty of a joint event is
less than or equal to the sum of the individual uncertainties

4. Any change toward equalization of the probabilitgsp,,. .., pn increase$d. Thus if p1 < p2 and
we increasep, decreasing, an equal amount so thai andp; are more nearly equal, théh increases.
More generally, if we perform any “averaging” operation be p; of the form

pi = Zaij Pj
J

wherey;aj = y;aj =1, and alla;; > 0, thenH increases (except in the special case where this transfor-
mation amounts to no more than a permutation ofihwith H of course remaining the same).

5. Suppose there are two chance evergady as in 3, not necessarily independent. For any particular
valuei thatx can assume there is a conditional probabititfj ) thaty has the valug. This is given by

p(i, )
We define theonditional entropyof y, Hy(y) as the average of the entropyydbr each value o%, weighted
according to the probability of getting that particuarThat is

pi(j) =

Z p(i, ) log pi(]

This quantity measures how uncertain we arg o the average when we knowSubstituting the value of
pi(j) we obtain

Zp i) logp(i, +Zp IogZp
(x,y)—(>

or
H(x,y) = H(X) + Hx(y).

The uncertainty (or entropy) of the joint eveqyy is the uncertainty oX plus the uncertainty of whenx is
known.
6. From 3 and 5 we have

H(X) +H(y) > H(xy) = H(x) + Hx(y).
Hence
H(y) > Hx(y).

The uncertainty of is never increased by knowledgeofit will be decreased unlegsandy are independent
events, in which case it is not changed.

12



7. THE ENTROPY OF ANINFORMATION SOURCE

Consider a discrete source of the finite state type considdyeve. For each possible statbere will be a
set of probabilities;(j) of producing the various possible symbg@lsThus there is an entrogy; for each
state. The entropy of the source will be defined as the averfatheseH; weighted in accordance with the
probability of occurrence of the states in question:

H=Y PH
=—> Ppi(j)logpi(j).
;)

This is the entropy of the source per symbol of text. If the kédfrprocess is proceeding at a definite time
rate there is also an entropy per second

H =¥ fiH
2
wheref; is the average frequency (occurrences per second) ofi s@kearly
H' = mH

wheremis the average number of symbols produced per seddrad.H' measures the amount of informa-
tion generated by the source per symbol or per second. Ibteithmic base is 2, they will represent bits
per symbol or per second.

If successive symbols are independent tHeis simply — ¥ pjlog pi wherep; is the probability of sym-
boli. Suppose in this case we consider a long messabjesgmbols. It will contain with high probability
aboutp; N occurrences of the first symbqid;N occurrences of the second, etc. Hence the probability sf thi

particular message will be roughly
— PN PN paN
P=pP1 P2 n

or

logp=N pilogp
|

logp=—NH
. logl/p
H= N

H is thus approximately the logarithm of the reciprocal ptulig of a typical long sequence divided by the
number of symbols in the sequence. The same result holdsijosaurce. Stated more precisely we have
(see Appendix 3):

Theorem 3:Given any > 0 andé > 0, we can find afNy such that the sequences of any lerigth Ny
fall into two classes:

1. A set whose total probability is less than

2. The remainder, all of whose members have probabilitiesfgiag the inequality

logp™t
N

M/ <.

_ logp~* .
In other words we are almost certain to havgp— very close taH whenN is large.

A closely related result deals with the number of sequentesrmus probabilities. Consider again the
sequences of lengtN and let them be arranged in order of decreasing probabllify.definen(q) to be
the number we must take from this set starting with the mosibginle one in order to accumulate a total
probabilityq for those taken.

13



Theorem 4:
logn(q)

Lim =H
N— o0

whenq does not equd or1.

We may interpret log(q) as the number of bits required to specify the sequence wheasder only
logn(q)

the most probable sequences with a total probafiglitfhen is the number of bits per symbol for

the specification. The theorem says that for laxgghis will be independent af and equal tdd. The rate
of growth of the logarithm of the number of reasonably prdealequences is given by, regardless of our
interpretation of “reasonably probable.” Due to these ltsswhich are proved in Appendix 3, it is possible
for most purposes to treat the long sequences as thoughiikezgust 2'N of them, each with a probability
2-HN,

The next two theorems show thet andH’ can be determined by limiting operations directly from
the statistics of the message sequences, without refetetice states and transition probabilities between
states.

Theorem 5:Let p(B;) be the probability of a sequenBegof symbols from the source. Let
1
Gn = .Z P(Bi)logp(Bi)

where the sum is over all sequen8ggontainingN symbols. Thefsy is a monotonic decreasing function
ofN and
Lim Gy = H.
N— o0
Theorem 6:Let p(B;,S;) be the probability of sequend®d followed by symbolS; and pg,(Sj) =
P(Bi,Sj)/p(Bi) be the conditional probability & afterB;. Let

Fn=— p(Bi,Sj)log ps(S;)
1]

where the sum is over all block of N — 1 symbols and over all symbo. ThenFy is a monotonic
decreasing function o,

Fn = NGy — (N— 1)Gn1,
1 N

GN — N Fﬂ:
N nzl

FN S GN:

andLimy_Fny =H.

These results are derived in Appendix 3. They show that asefiapproximationstbl can be obtained
by considering only the statistical structure of the segesrextending over,2,...,N symbols.Fy is the
better approximation. In fad®y is the entropy of the\!" order approximation to the source of the type
discussed above. If there are no statistical influences dictg over more thaiN symbols, that is if the
conditional probability of the next symbol knowing the peding(N — 1) is not changed by a knowledge of
any before that, theRy = H. Fy of course is the conditional entropy of the next symbol whenN — 1)
preceding ones are known, whiB is the entropy per symbol of blocks bf symbols.

The ratio of the entropy of a source to the maximum value itecbave while still restricted to the same
symbols will be called itselative entropy This is the maximum compression possible when we encode int
the same alphabet. One minus the relative entropy issithendancy The redundancy of ordinary English,
not considering statistical structure over greater digtarthan about eight letters, is roughly 50%. This
means that when we write English half of what we write is dataed by the structure of the language and
half is chosen freely. The figure 50% was found by severalgaddent methods which all gave results in

14



this neighborhood. One is by calculation of the entropy efdpproximations to English. A second method
is to delete a certain fraction of the letters from a sampl&mglish text and then let someone attempt to
restore them. If they can be restored when 50% are deletegdomdancy must be greater than 50%. A
third method depends on certain known results in cryptdgrap

Two extremes of redundancy in English prose are represdnyt&isic English and by James Joyce’s
book “Finnegans Wake”. The Basic English vocabulary istéaito 850 words and the redundancy is very
high. This is reflected in the expansion that occurs when sgogsis translated into Basic English. Joyce
on the other hand enlarges the vocabulary and is allegedteweca compression of semantic content.

The redundancy of a language is related to the existenceosbword puzzles. If the redundancy is
zero any sequence of letters is a reasonable text in the dgegand any two-dimensional array of letters
forms a crossword puzzle. If the redundancy is too high thguage imposes too many constraints for large
crossword puzzles to be possible. A more detailed analisissthat if we assume the constraints imposed
by the language are of a rather chaotic and random natuge, taossword puzzles are just possible when
the redundancy is 50%. If the redundancy is 33%, three-dsineal crossword puzzles should be possible,
etc.

8. REPRESENTATION OF THEENCODING AND DECODING OPERATIONS

We have yet to represent mathematically the operation®peed by the transmitter and receiver in en-
coding and decoding the information. Either of these willched a discrete transducer. The input to the
transducer is a sequence of input symbols and its outputteeseg of output symbols. The transducer may
have an internal memory so that its output depends not onflg@present input symbol but also on the past
history. We assume that the internal memory is finite, itere exist a finite numben of possible states of

the transducer and that its output is a function of the prtestate and the present input symbol. The next
state will be a second function of these two quantities. Ehmansducer can be described by two functions:

Yn = f(Xn, n)
ant1 = g(Xn, an)

where

X is then input symbol,

an is the state of the transducer when tfeinput symbol is introduced,

Yn is the output symbol (or sequence of output symbols) prodludeenx, is introduced if the state isp.

If the output symbols of one transducer can be identified thighinput symbols of a second, they can be
connected in tandem and the result is also a transducereri #xists a second transducer which operates
on the output of the first and recovers the original input fitst transducer will be called non-singular and
the second will be called its inverse.

Theorem 7:The output of a finite state transducer driven by a finite ss&déstical source is a finite
State statistical source, with entropy (per unit time) ks or equal to that of the input. If the transducer
is non-singular they are equal.

Leta represent the state of the source, which produces a seqofesyrabolsx;; and lets be the state of
the transducer, which produces, in its output, blocks oftsgisy;. The combined system can be represented
by the “product state space” of paifs, 3). Two points in the spacgvi, 1) and(az, 32), are connected by
a line if a1 can produce ar which changeg; to 2, and this line is given the probability of thatn this
case. The line is labeled with the blockygfsymbols produced by the transducer. The entropy of the dutpu
can be calculated as the weighted sum over the states. Ifwéist on each resulting term is less than or
equal to the corresponding term fey hence the entropy is not increased. If the transducer issirayular
let its output be connected to the inverse transducet; IH; andH; are the output entropies of the source,
the first and second transducers respectively, Hier H, > H; = H; and thereforéd; = H,.
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Suppose we have a system of constraints on possible seguartbe type which can be represented by
alinear graph as in Fig. 2. If probabilitiq&és) were assigned to the various lines connecting $tiatstatej
this would become a source. There is one particular assighwtéch maximizes the resulting entropy (see
Appendix 4).

Theorem 8:Let the system of constraints considered as a channel haapazityC = logW. If we
assign

(s _ Bj —®
by = EW !

Wherefi(js) is the duration of the” symbol leading from stateto statej and theB; satisfy

¢
B = ZBJ'W 1
S,J

thenH is maximized and equal to.

By proper assignment of the transition probabilities theaay of symbols on a channel can be maxi-
mized at the channel capacity.

9. THE FUNDAMENTAL THEOREM FOR ANOISELESSCHANNEL

We will now justify our interpretation oH as the rate of generating information by proving tHatleter-
mines the channel capacity required with most efficientrogdi

Theorem 9:Let a source have entropy (bits per symbdl and a channel have a capady bits per
secondl. Then it is possible to encode the output of the source in suehy as to transmit at the average

C . o . . )
rateﬁ — e symbols per second over the channel wheagearbitrarily small. It is not possible to transmit at

C
an average rate greater l'hﬁﬂ

The converse part of the theorem, tlcg?tcannot be exceeded, may be proved by noting that the entropy

of the channel input per second is equal to that of the soaites the transmitter must be non-singular, and
also this entropy cannot exceed the channel capacity. H¢heeC and the number of symbols per second
=H'/H <C/H.

The first part of the theorem will be proved in two differentysa The first method is to consider the
set of all sequences &f symbols produced by the source. Fotarge we can divide these into two groups,
one containing less thal®N members and the second containing less tH&hr@embers (wher® is
the logarithm of the number of different symbols) and hadrigtal probability less than. AsN increases
n andy, approach zero. The number of signals of durafioim the channel is greater thaf2¢)T with 6
small whenT is large. if we choose

H
T= < c + A) N

then there will be a sufficient number of sequences of chasymebols for the high probability group when

N andT are sufficiently large (however smal) and also some additional ones. The high probability group
is coded in an arbitrary one-to-one way into this set. Theaiaing sequences are represented by larger
sequences, starting and ending with one of the sequencassedtfor the high probability group. This
special sequence acts as a start and stop signal for a diffsvde. In between a sufficient time is allowed
to give enough different sequences for all the low probghifiessages. This will require

R
T = <6+<P>N

whereyp is small. The mean rate of transmission in message symbiosepend will then be greater than

{(1—5)%”%1 _l: [(1-5)(%+A)+5(g+¢)}1
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As N increases, A andy approach zero and the rate approacﬁes

Another method of performing this coding and thereby prgifre theorem can be described as follows:
Arrange the messages of lendthin order of decreasing probability and suppose their priditiab are
p1> p2> P3--- > pn. LetPs= zfl pi; that isPs is the cumulative probability up to, but not including,

We first encode into a binary system. The binary code for ngessia obtained by expandirig; as a binary
number. The expansion is carried outtgplaces, wherex is the integer satisfying:

1 1
log, — <ms< 1+log, —.
Ps Ps

Thus the messages of high probability are represented by ataes and those of low probability by long
codes. From these inequalities we have

1
oms S Ps< ST

The code folPs will differ from all succeeding ones in one or more ofiitg places, since all the remaining
P are at Ieastzims larger and their binary expansions therefore differ in the ffins places. Consequently all
the codes are different and it is possible to recover the agesom its code. If the channel sequences are
not already sequences of binary digits, they can be aschilmedy numbers in an arbitrary fashion and the
binary code thus translated into signals suitable for ttanokl.

The average numbeét’ of binary digits used per symbol of original message is gastimated. We
have

1
H' = N Z Mg Ps.
But 1 1 1 1 1
NZ(|092E)F’5S N 2 MsPs < Nz(lﬂogzas) Ps
and therefore,

1
GNgH’<GN+N

As N increase&y approachesl, the entropy of the source aktl approaches.

We see from this that the inefficiency in coding, when only &didelay ofN symbols is used, need
not be greater thalﬁ\i plus the difference between the true entrépyand the entropysy calculated for
sequences of lengtl. The per cent excess time needed over the ideal is therefgdHan

This method of encoding is substantially the same as onedfinarependently by R. M. Farib.His
method is to arrange the messages of letyih order of decreasing probability. Divide this series itvo
groups of as nearly equal probability as possible. If thesags is in the first group its first binary digit
will be 0, otherwise 1. The groups are similarly divided istadbsets of nearly equal probability and the
particular subset determines the second binary digit. ptosess is continued until each subset contains
only one message. It is easily seen that apart from minagréiffices (generally in the last digit) this amounts
to the same thing as the arithmetic process described above.

10. DISCUSSION ANDEXAMPLES

In order to obtain the maximum power transfer from a genetata load, a transformer must in general be
introduced so that the generator as seen from the load histheesistance. The situation here is roughly
analogous. The transducer which does the encoding shoutthritee source to the channel in a statistical
sense. The source as seen from the channel through theucansthould have the same statistical structure

9Technical Report No. 65, The Research Laboratory of Elaittsp M.1.T., March 17, 1949.
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as the source which maximizes the entropy in the channel.cohtent of Theorem 9 is that, although an
exact match is not in general possible, we can approximate ¢tosely as desired. The ratio of the actual
rate of transmission to the capac@ymay be called the efficiency of the coding system. This is afrse
equal to the ratio of the actual entropy of the channel sysitothe maximum possible entropy.

In general, ideal or nearly ideal encoding requires a lorigydim the transmitter and receiver. In the
noiseless case which we have been considering, the maitidoraf this delay is to allow reasonably good
matching of probabilities to corresponding lengths of ssgpes. With a good code the logarithm of the
reciprocal probability of a long message must be propoalitmthe duration of the corresponding signal, in
fact

—1
‘ logp™ C‘

T
must be small for all but a small fraction of the long messages

If a source can produce only one particular message itsgnisaero, and no channel is required. For
example, a computing machine set up to calculate the sueeafigits of 7 produces a definite sequence
with no chance element. No channel is required to “transthis’ to another point. One could construct a
second machine to compute the same sequence at the poingveipthis may be impractical. In such a case
we can choose to ignore some or all of the statistical knogdegle have of the source. We might consider
the digits ofr to be a random sequence in that we construct a system caga@ading any sequence of
digits. In a similar way we may choose to use some of our sitalknowledge of English in constructing
a code, but not all of it. In such a case we consider the souitbetihe maximum entropy subject to the
statistical conditions we wish to retain. The entropy o§tbdurce determines the channel capacity which
is necessary and sufficient. In theexample the only information retained is that all the digits chosen
from the set 01,...,9. In the case of English one might wish to use the statistiaaing possible due to
letter frequencies, but nothing else. The maximum entropyce is then the first approximation to English
and its entropy determines the required channel capacity.

As a simple example of some of these results consider a sadrioh produces a sequence of letters
choien from among, B, C, D with probabilities], 3, 1, 2, successive symbols being chosen independently.
We have

H=—(}log3+ 2logZ + Zlog3)
= I bits per symbol

Thus we can approximate a coding system to encode message#is source into binary digits with an
average on—1 binary digit per symbol. In this case we can actually achtbedimiting value by the following
code (obtained by the method of the second proof of Theorem 9)

A 0
B 10
C 110
D 111

The average number of binary digits used in encoding a segusiN symbols will be

N(3 ><1+%><2+§><3) =IN.
It is easily seen that the binary digits 0, 1 have probabﬂig, % so theH for the coded sequences is one
bit per symbol. Since, on the average, we hé\h&'nary symbols per original letter, the entropies on a time
basis are the same. The maximum possible entropy for thmatiget is log4= 2, occurring whem, B, C,
D have probabilitieg, 1, 3, 2. Hence the relative entropy § We can translate the binary sequences into
the original set of symbols on a two-to-one basis by the ¥alhg table:

00 A
01 B
10 c
11 D’
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This double process then encodes the original messagdmsame symbols but with an average compres-
sion ratiog.

As a second example consider a source which produces a sequidks andB’s with probability p for
Aandgq for B. If p < gqwe have

H = —logpP(1—p)*~P
= —plogp(1-p)!* P/P

= plog =
o
In such a case one can construct a fairly good coding of theageson a 0, 1 channel by sending a special
sequence, say 0000, for the infrequent synfbahd then a sequence indicating themberof B's following
it. This could be indicated by the binary representatiorhwail numbers containing the special sequence
deleted. All numbers up to 16 are represented as usual; #priesented by the next binary number after 16
which does not contain four zeros, namely-2710001, etc.
It can be shown that g3— 0 the coding approaches ideal provided the length of theajmesmjuence is

properly adjusted.

PART II: THE DISCRETE CHANNEL WITH NOISE

11. REPRESENTATION OF ANOISY DISCRETECHANNEL

We now consider the case where the signal is perturbed by doisng transmission or at one or the other
of the terminals. This means that the received signal is roessarily the same as that sent out by the
transmitter. Two cases may be distinguished. If a partidngasmitted signal always produces the same
received signal, i.e., the received signal is a definitetionof the transmitted signal, then the effect may be
called distortion. If this function has an inverse — no twansmitted signals producing the same received
signal — distortion may be corrected, at least in princijpg, merely performing the inverse functional
operation on the received signal.

The case of interest here is that in which the signal doesimatya undergo the same change in trans-
mission. In this case we may assume the received sigt@be a function of the transmitted sigri&and a
second variable, the noidée

E=f(SN)
The noise is considered to be a chance variable just as treagesgvas above. In general it may be repre-
sented by a suitable stochastic process. The most genpeabfynoisy discrete channel we shall consider
is a generalization of the finite state noise-free chann&triteed previously. We assume a finite number of
states and a set of probabilities

Pa,i (8, 1)-

This is the probability, if the channel is in stateand symbol is transmitted, that symbglwill be received
and the channel left in state Thusa andg range over the possible statésyer the possible transmitted
signals and over the possible received signals. In the case where ssicesymbols are independently per-
turbed by the noise there is only one state, and the chandebizibed by the set of transition probabilities
pi(j), the probability of transmitted symbbbeing received ag.

If a noisy channel is fed by a source there are two statigicadesses at work: the source and the noise.
Thus there are a number of entropies that can be calculatest.tliere is the entropli (x) of the source
or of the input to the channel (these will be equal if the traitter is non-singular). The entropy of the
output of the channel, i.e., the received signal, will bealed byH (y). In the noiseless cas¢(y) = H(x).
The joint entropy of input and output will be(xy). Finally there are two conditional entropiklg(y) and
Hy(x), the entropy of the output when the input is known and comhgr&\mong these quantities we have
the relations

H(x,Y) = H(x) + Hy(y) = H(y) + Hy(x).

All of these entropies can be measured on a per-second orsymérol basis.
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12. EQUIVOCATION AND CHANNEL CAPACITY

If the channel is noisy it is not in general possible to retats the original message or the transmitted
signal withcertaintyby any operation on the received sigial There are, however, ways of transmitting
the information which are optimal in combating noise. Tithie problem which we now consider.

Suppose there are two possible symbols 0 and 1, and we asanitting at a rate of 1000 symbols per
second with probabilitiepg = p1 = % Thus our source is producing information at the rate of 109
per second. During transmission the noise introduceseswothat, on the average, 1 in 100 is received
incorrectly (a 0 as 1, or 1 as 0). What is the rate of transiissf information? Certainly less than 1000
bits per second since about 1% of the received symbols acergat. Our first impulse might be to say
the rate is 990 bits per second, merely subtracting the éagpewmber of errors. This is not satisfactory
since it fails to take into account the recipient’s lack oblhedge of where the errors occur. We may carry
it to an extreme case and suppose the noise so great thattiea symbols are entirely independent of
the transmitted symbols. The probability of receiving J%iwhatever was transmitted and similarly for O.
Then about half of the received symbols are correct due toashalone, and we would be giving the system
credit for transmitting 500 bits per second while actualhimformation is being transmitted at all. Equally
“good” transmission would be obtained by dispensing with ¢hannel entirely and flipping a coin at the
receiving point.

Evidently the proper correction to apply to the amount obinfation transmitted is the amount of this
information which is missing in the received signal, or aitdively the uncertainty when we have received
a signal of what was actually sent. From our previous disonssf entropy as a measure of uncertainty it
seems reasonable to use the conditional entropy of the gegdgaowing the received signal, as a measure
of this missing information. This is indeed the proper déifoim, as we shall see later. Following this idea
the rate of actual transmissioR, would be obtained by subtracting from the rate of produrcfice., the
entropy of the source) the average rate of conditional egtro

R=H(x) — Hy(x)

The conditional entropiy(x) will, for convenience, be called the equivocation. It measuhe average
ambiguity of the received signal.

In the example considered above, if a 0 is receivedatpesterioriprobability that a 0 was transmitted
is .99, and that a 1 was transmitted is .01. These figuresaeese if a 1 is received. Hence

Hy(x) = —[.99109.99+ 0.0110gQ01]
= .081 bits/symbol

or 81 bits per second. We may say that the system is transgnitia rate 1008 81= 919 bits per second.
In the extreme case where a 0 is equally likely to be receigeal@or 1 and similarly for 1, tha posteriori
probabilities are}, 1 and

Hy(x) = —[31093 + 3 log 3]
= 1 bit per symbol

or 1000 bits per second. The rate of transmission is thentsasild be.

The following theorem gives a direct intuitive interprésatof the equivocation and also serves to justify
it as the unique appropriate measure. We consider a comatigricsystem and an observer (or auxiliary
device) who can see both what is sent and what is recoveréuéwbrs due to noise). This observer notes
the errors in the recovered message and transmits datateddiging point over a “correction channel” to
enable the receiver to correct the errors. The situatiomdieated schematically in Fig. 8.

Theorem 10:If the correction channel has a capacity equaHigx) it is possible to so encode the
correction data as to send it over this channel and correlstibén arbitrarily small fractios of the errors.
This is not possible if the channel capacity is less tHa(x).
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Fig. 8—Schematic diagram of a correction system.

Roughly thenHy(x) is the amount of additional information that must be sugpjer second at the
receiving point to correct the received message.

To prove the first part, consider long sequences of receivessageM’ and corresponding original
messagél. There will be logarithmicallyl Hy(x) of the M’s which could reasonably have produced each
M’. Thus we havd Hy(x) binary digits to send eachseconds. This can be done witfrequency of errors
on a channel of capacityly(x).

The second part can be proved by noting, first, that for argretie chance variablesy, z

Hy(x,2) > Hy(x).
The left-hand side can be expanded to give

Hy(2) + Hyz(X) > Hy(x)
Hyz(x) > Hy(x) — Hy(2) > Hy(X) — H(2).

If we identify x as the output of the sourcgas the received signal azds the signal sent over the correction
channel, then the right-hand side is the equivocation hesedte of transmission over the correction channel.
If the capacity of this channel is less than the equivocatierright-hand side will be greater than zero and
Hy(x) > 0. But this is the uncertainty of what was sent, knowing bbthreceived signal and the correction
signal. If this is greater than zero the frequency of errarsot be arbitrarily small.

Example:

Suppose the errors occur at random in a sequence of binaty: gigobability p that a digit is wrong
andg= 1- pthat it is right. These errors can be corrected if their posits known. Thus the
correction channel need only send information as to thes#i@as. This amounts to transmitting
from a source which produces binary digits with probabifitior 1 (incorrect) andj for O (correct).
This requires a channel of capacity

—[plogp+qlogq]
which is the equivocation of the original system.

The rate of transmissioR can be written in two other forms due to the identities noteava. We have
R=H(x)

=H(y)
=H(X) +H(y) —H(xy).



The first defining expression has already been interpretéteammount of information sent less the uncer-
tainty of what was sent. The second measures the amounteddess the part of this which is due to noise.
The third is the sum of the two amounts less the joint entrop/therefore in a sense is the number of bits
per second common to the two. Thus all three expressionsehewdain intuitive significance.

The capacityC of a noisy channel should be the maximum possible rate oinéssion, i.e., the rate
when the source is properly matched to the channel. We tirerdé&fine the channel capacity by

C = Max(H(x) — Hy(x))

where the maximum is with respect to all possible infornraources used as input to the channel. If the
channel is noiselessly(x) = 0. The definition is then equivalent to that already giverefapiseless channel
since the maximum entropy for the channel is its capacity.

13. THE FUNDAMENTAL THEOREM FOR ADISCRETECHANNEL WITH NOISE

It may seem surprising that we should define a definite cap@dibr a noisy channel since we can never
send certain information in such a case. It is clear, howdlat by sending the information in a redundant
form the probability of errors can be reduced. For examplegpeating the message many times and by a
statistical study of the different received versions ofitiessage the probability of errors could be made very
small. One would expect, however, that to make this proliglif errors approach zero, the redundancy
of the encoding must increase indefinitely, and the rateasfsimission therefore approach zero. This is by
no means true. If it were, there would not be a very well deficagohcity, but only a capacity for a given
frequency of errors, or a given equivocation; the capaaiiyg down as the error requirements are made
more stringent. Actually the capaci®/defined above has a very definite significance. It is possibdéend
information at the rat€ through the channe&lith as small a frequency of errors or equivocation as dekire
by proper encoding. This statement is not true for any regatgr tharC. If an attempt is made to transmit
at a higher rate tha@, sayC + Ry, then there will necessarily be an equivocation equal toeatgr than the
excessR;. Nature takes payment by requiring just that much uncegxtgso that we are not actually getting
any more thar€ through correctly.

The situation is indicated in Fig. 9. The rate of informatioto the channel is plotted horizontally and
the equivocation vertically. Any point above the heavy linehe shaded region can be attained and those
below cannot. The points on the line cannot in general bénatlabut there will usually be two points on
the line that can.

These results are the main justification for the definitio@ @ihd will now be proved.

Theorem 11:Let a discrete channel have the capaCitgnd a discrete source the entropy per se¢dnd
If H < C there exists a coding system such that the output of the s@art be transmitted over the channel
with an arbitrarily small frequency of errors (or an arhitikasmall equivocation). IH > C it is possible
to encode the source so that the equivocation is lessHhaf + e wheree is arbitrarily small. There is no
method of encoding which gives an equivocation less ha+C.

The method of proving the first part of this theorem is not biikiting a coding method having the
desired properties, but by showing that such a code mudtiaxascertain group of codes. In fact we will

QUNNNNANNN
ATTAINABLE
REGION

C H(x)

Fig. 9—The equivocation possible for a given input entrapg thannel.
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average the frequency of errors over this group and showthigativerage can be made less thailf the
average of a set of numbers is less thahere must exist at least one in the set which is less ¢hdrhis
will establish the desired result.

The capacityC of a noisy channel has been defined as

C = Max(H (x) — Hy(x))

wherex is the input ang the output. The maximization is over all sources which miggtised as input to
the channel.

Let S be a source which achieves the maximum capdagityf this maximum is not actually achieved
by any source le§ be a source which approximates to giving the maximum rat@p8seS, is used as
input to the channel. We consider the possible transmitteld@eceived sequences of a long durafiorThe
following will be true:

1. The transmitted sequences fall into two classes, a higibghility group with about P*®) members
and the remaining sequences of small total probability.

2. Similarly the received sequences have a high probalsiityof about %) members and a low
probability set of remaining sequences.

3. Each high probability output could be produced by abdt® inputs. The probability of all other
cases has a small total probability.

All the €'s andé’s implied by the words “small” and “about” in these staterseapproach zero as we
allow T to increase an8y to approach the maximizing source.

The situation is summarized in Fig. 10 where the input segemre points on the left and output
sequences points on the right. The fan of cross lines remiette range of possible causes for a typical
output.

E
.
M °
° .
° °

H(X)T
HIGH PROBABILITY HY)T
MESSAGES HIGH PROBABILITY

RECEIVED SIGNALS

2Hy ()T

REASONABLE CAUSES °®
° FOR EACHE °
[ ] [ )

2Hx(y)T

o REASONABLE EFFECTS o
FOR EACHM

[ ]

Fig. 10—Schematic representation of the relations betirgaits and outputs in a channel.
Now suppose we have another source producing informaticat@R with R < C. In the periodT this

source will have 2R high probability messages. We wish to associate these veittheation of the possible
channel inputs in such a way as to get a small frequency ofserie will set up this association in all
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possible ways (using, however, only the high probabilityugr of inputs as determined by the souBg
and average the frequency of errors for this large class s§iple coding systems. This is the same as
calculating the frequency of errors for a random assogiaifidhe messages and channel inputs of duration
T. Suppose a particular outpytt is observed. What is the probability of more than one mesgatie set

of possible causes gi? There are 2R messages distributed at random i'®) points. The probability of

a particular point being a message is thus
2T(R-H(¥)

The probability that none of the points in the fan is a mesgapgart from the actual originating message) is

p= [1— 2T(R-H092™,

Now R < H(x) — Hy(x) soR—H(x) = —Hy(x) —n with  positive. Consequently

STHy(%)

P=[1-2 TH(=Tn]

approaches (ab — )
1—-27T,

Hence the probability of an error approaches zero and thepfirs of the theorem is proved.

The second part of the theorem is easily shown by noting tlkadould merely sen@ bits per second
from the source, completely neglecting the remainder ofinfi@mation generated. At the receiver the
neglected part gives an equivocatidiix) — C and the part transmitted need only add his limit can also
be attained in many other ways, as will be shown when we centli@ continuous case.

The last statement of the theorem is a simple consequence débnition ofC. Suppose we can encode
a source witlH (x) = C+ain such a way as to obtain an equivocattdy{x) = a— e with e positive. Then
R=H(x) =C+aand

H(x) —Hy(x) =C+e¢

with e positive. This contradicts the definition Gfas the maximum offf (x) — Hy(X).

Actually more has been proved than was stated in the theotethe average of a set of numbers is
within e of of their maximum, a fraction of at mogte can be more thatye below the maximum. Sinceis
arbitrarily small we can say that almost all the systems evitrarily close to the ideal.

14. DISCUSSION

The demonstration of Theorem 11, while not a pure existenoefphas some of the deficiencies of such
proofs. An attempt to obtain a good approximation to idedliieg by following the method of the proof is
generally impractical. In fact, apart from some ratheiaticases and certain limiting situations, no explicit
description of a series of approximation to the ideal hasildeand. Probably this is no accident but is
related to the difficulty of giving an explicit constructiéor a good approximation to a random sequence.

An approximation to the ideal would have the property thahé signal is altered in a reasonable way
by the noise, the original can still be recovered. In otherdsdhe alteration will not in general bring it
closer to another reasonable signal than the original. iStdscomplished at the cost of a certain amount of
redundancy in the coding. The redundancy must be introdinctite proper way to combat the particular
noise structure involved. However, any redundancy in thecwill usually help if it is utilized at the
receiving point. In particular, if the source already hasedain redundancy and no attempt is made to
eliminate it in matching to the channel, this redundancykelp combat noise. For example, in a noiseless
telegraph channel one could save about 50% in time by promadéng of the messages. This is not done
and most of the redundancy of English remains in the charynaibsls. This has the advantage, however,
of allowing considerable noise in the channel. A sizabletfom of the letters can be received incorrectly
and still reconstructed by the context. In fact this is plapaot a bad approximation to the ideal in many
cases, since the statistical structure of English is rativetved and the reasonable English sequences are
not too far (in the sense required for the theorem) from asamselection.
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As in the noiseless case a delay is generally required tooapprthe ideal encoding. It now has the
additional function of allowing a large sample of noise téeef the signal before any judgment is made
at the receiving point as to the original message. Incrgasia sample size always sharpens the possible
statistical assertions.

The content of Theorem 11 and its proof can be formulated onzesvhat different way which exhibits
the connection with the noiseless case more clearly. Cengié possible signals of duratidrand suppose
a subset of them is selected to be used. Let those in the slbiseused with equal probability, and suppose
the receiver is constructed to select, as the original sigi@most probable cause from the subset, when a
perturbed signal is received. We defld€T, q) to be the maximum number of signals we can choose for the
subset such that the probability of an incorrect interpi@tds less than or equal

Theorem 12:IT_im w

—00

= C, whereC is the channel capacity, provided tlydoes not equal 0 or
1.

In other words, no matter how we set out limits of reliabjlitye can distinguish reliably in tim&
enough messages to correspond to aBdubits, whenT is sufficiently large. Theorem 12 can be compared
with the definition of the capacity of a noiseless channetgiw Section 1.

15. EXAMPLE OF A DISCRETECHANNEL AND ITS CAPACITY

A simple example of a discrete channel is indicated in Fig.Tkere are three possible symbols. The first is
never affected by noise. The second and third each have lgtitypg of coming through undisturbed, and
g of being changed into the other of the pair. We have (letting —[plogp + glogg] andP andQ be the

¢ —>—0
p
TRANSMITTED { RECEIVED
SYMBOLS SYMBOLS
q
p

Fig. 11—Example of a discrete channel.
probabilities of using the first and second symbols)

H(x) = —PlogP — 2QlogQ
Hy(x) = 2Qa.

We wish to choos® andQ in such a way as to maximié(x) — Hy(x), subject to the constraift+2Q =1.
Hence we consider
U = —PlogP — 2QlogQ — 2Qa + A\(P+ 2Q)

ou

et —1-logP+X=0
ouU
E =—-2-2logQ—2a+2\=0.
Eliminating A
logP =10ogQ+ «
P=Qe" =Qf
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1

=52

B
pP=
B+2
The channel capacity is then
p+2
5
Note how this checks the obvious values in the casesl andp = % In the first,3 = 1 andC = log 3,
which is correct since the channel is then noiseless witbethrossible symbols. I = % B =2 and
C =log2. Here the second and third symbols cannot be distihgdist all and act together like one
symbol. The first symbol is used with probabilfy= % and the second and third together with probability
%. This may be distributed between them in any desired way @lhdchieve the maximum capacity.
For intermediate values g the channel capacity will lie between log2 and log3. Theimiision
between the second and third symbols conveys some infamitit not as much as in the noiseless case.
The first symbol is used somewhat more frequently than ther dtéo because of its freedom from noise.

C=log

16. THE CHANNEL CAPACITY IN CERTAIN SPECIAL CASES

If the noise affects successive channel symbols indepdiydertan be described by a set of transition
probabilitiesp;j. This is the probability, if symbadilis sent, thaf will be received. The maximum channel
rate is then given by the maximum of

— Rpijlogy Rpij + ) Rpijlogp;
1,] | 1,]

where we vary thé subject tos P = 1. This leads by the method of Lagrange to the equations,

Psj
ilog——"— = s=1,2,....
2}951 gziRpij 1

Multiplying by Ps and summing ors shows thaf, = C. Let the inverse ofs; (if it exists) behs; so that
Y shstpsj = &tj. Then:

Z hstpsjlog psj — Iogz RPpi = Cz hst.

S,) I S

Hence:
> Ppi = eXp[—CZ hst+ > hstpsjlog ps;}
| S S)J

or,
P = Z hit exp[—CZ hst + Z hstps;jlog psj} :
S S]

This is the system of equations for determining the maxingjzialues o, with C to be determined so
thaty B = 1. When this is don€ will be the channel capacity, and tRethe proper probabilities for the
channel symbols to achieve this capacity.

If each input symbol has the same set of probabilities onities lemerging from it, and the same is true
of each output symbol, the capacity can be easily calcul&rdmples are shown in Fig. 12. In such a case
Hyx(y) is independent of the distribution of probabilities on thput symbols, and is given by 3 p;log p;
where thep; are the values of the transition probabilities from any irggumbol. The channel capacity is

Max[H (y) — Hx(y)] = MaxH(y) + 3 pilogpi.

The maximum ofH (y) is clearly lognwheremis the number of output symbols, since it is possible to make
them all equally probable by making the input symbols egquaibbable. The channel capacity is therefore

C=logm+ % pilogpi.
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a b Cc

Fig. 12—Examples of discrete channels with the same tiangirobabilities for each input and for each output.

In Fig. 12a it would be
C=log4—log2=log2

This could be achieved by using only the 1st and 3d symbolBign12b
C=log4—2log3—1log6

=log4—log3— log2

= Iog%Z%.
In Fig. 12c we have

C=log3- }log2—1log3— tlog6
233368
Suppose the symbols fall into several groups such that tlse mever causes a symbol in one group to

be mistaken for a symbol in another group. Let the capacityifenth group beC, (in bits per second)

when we use only the symbols in this group. Then it is easigmshthat, for best use of the entire set, the

total probabilityR, of all symbols in thenth group should be
2Cn
Pn - @

Within a group the probability is distributed just as it wdide if these were the only symbols being used.
The channel capacity is
C=log§ 2.

17. AN EXAMPLE OF EFFICIENT CODING

The following example, although somewhat unrealistic,éase in which exact matching to a noisy channel
is possible. There are two channel symbols, 0 and 1, and ke affects them in blocks of seven symbols.
A block of seven is either transmitted without error, or ékaone symbol of the seven is incorrect. These
eight possibilities are equally likely. We have

C = Max[H(y) — Hx(y)]
= 3[7+§logg]
= 4 bits/symbol

An efficient code, allowing complete correction of errorgldransmitting at the rat€, is the following
(found by a method due to R. Hamming):
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Let a block of seven symbols B, Xz, ..., X7. Of theseXs, X5, Xg and X7 are message symbols and
chosen arbitrarily by the source. The other three are reghirahd calculated as follows:

X4 is chosento make a = X4+ X5+ Xe+ X7 even
X2 13 13 13 13 6 — X2 + x3 + x6 + X7 "
X, ¢ e« = Xgt Xat Xet Xy ¢

When a block of seven is received and+y are calculated and if even called zero, if odd called one. The
binary number 5+ then gives the subscript of thé that is incorrect (if O there was no error).

APPENDIX 1
THE GROWTH OF THENUMBER OF BLOCKS OFSYMBOLS WITH A FINITE STATE CONDITION

LetNi(L) be the number of blocks of symbols of lendgtlending in staté. Then we have
Nj(L) = 3 Ni(L—b)
1S

Wherebilj , bﬁ e b{}‘ are the length of the symbols which may be chosen in staté lead to stat¢. These
are linear difference equations and the behavidr asc must be of the type

Nj = AjW*.
Substituting in the difference equation
(5)
AjWL — 5 AWSDI
2
or

(s)
A=Y AW
IS

(s)
3 (3w Ao
] S
For this to be possible the determinant

D(W) = [aij| =

()
ZWfbij — 5” ‘
S
must vanish and this determinég which is, of course, the largest real rootdf= 0.
The quantityC is then given by

ANL
C = Lim 1992 AW™

L—o0

= logW

and we also note that the same growth properties result ibgpeire that all blocks start in the same (arbi-
trarily chosen) state.

APPENDIX 2

DERIVATION OFH = — 5 pilogp;

11 1 " . . .
LetH (ﬁ’ IR ﬁ) = A(n). From condition (3) we can decompose a choice fahequally likely possi-
bilities into a series o choices fronms equally likely possibilities and obtain

A(S™) = mA(s).
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Similarly () "
A(t") = nA(t).

We can choosa arbitrarily large and find amto satisfy
SN <t < gMHD),
Thus, taking logarithms and dividing mlogs,

m logt m 1 m logt
<—<—+= or ———‘
n—logs—n n n logs

wheree is arbitrarily small. Now from the monotonic property &fn),
AS™) < At") < A(S™)
MA(S) < nA(t) < (m+ 1)A(S).

Hence, dividing bynA(s),

T<@<T+1‘ or T_@ <
n—A)~n n n A(s)‘
At) logt _

whereK must be positive to satisfy (2).
Now suppose we have a choice fronpossibilities with commeasurable probabilitigs= —;] where

then; are integers. We can break down a choice frpm possibilities into a choice from poslsibilities
with probabilitiesps, . .., py and then, if théth was chosen, a choice framwith equal probabilities. Using
condition (3) again, we equate the total choice frpm as computed by two methods

Klogy ni=H(py,...,pn) + K3 pilogn;.

Hence

H=K {z Pi Ioani - z pi Iogni}
=-K3p o= = K> pilogpi.
If the p; are incommeasurable, they may be approximated by ratiamalshe same expression must hold
by our continuity assumption. Thus the expression hold®imegal. The choice of coefficieKtis a matter
of convenience and amounts to the choice of a unit of measure.
APPENDIX 3
THEOREMS ONERGODIC SOURCES

If it is possible to go from any state with > 0 to any other along a path of probabilipy> O, the system is
ergodic and the strong law of large numbers can be applieds Tte number of times a given path in
the network is traversed in a long sequence of leMyth about proportional to the probability of being at
i, sayPR, and then choosing this patR;;N. If N is large enough the probability of percentage efiérin
this is less tham so that for all but a set of small probability the actual numshie within the limits

(P, pij £ 5)N.
Hence nearly all sequences have a probaligiven by

P pij£6)N

p= rlpi(j
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and—— gp is limited by

lo
Sp Z(Pplj +0)log pjj

or
Iog p

zpplj IngI]

This proves Theorem 3.

Theorem 4 follows immediately from this on calculating upged lower bounds fan(q) based on the
possible range of values gfin Theorem 3.

In the mixed (not ergodic) case if

L=>5 pLi
and the entropies of the componentsidie> H, > --- > H,, we have the

Theorem: Lim 'ogﬂ(q) = ¢(q) is a decreasing step function,

s-1

©(q) =Hs in the interval Z ai <q< Zau

To prove Theorems 5 and 6 first note ti&g is monotonic decreasing because increadingdds a
subscript to a conditional entropy. A simple substitutionfig, (S;) in the definition offy shows that

Fn=NGy — (N—1)Gn_1

. . . 1 . .
and summing this for alN givesGy = — ZFn. HenceGy > Fy andGy monotonic decreasing. Also they
must approach the same limit. By using Theorem 3 we see thaGhi=

N—oco

APPENDIX 4
MAXIMIZING THE RATE FOR A SYSTEM OF CONSTRAINTS

Suppose we have a set of constraints on sequences of syrhbbls bf the finite state type and can be
represented therefore by a linear graph. l,(ﬁt be the lengths of the various symbols that can occur in

passing from staté to statej. What distribution of probabilitie® for the different states andi(js) for
choosing symbaé in statei and going to stat¢ maximizes the rate of generating information under these
constraints? The constraints define a discrete channehang@aximum rate must be less than or equal to
the capacityC of this channel, since if all blocks of large length were dtydiely, this rate would result,

and if possible this would be best. We will show that this e be achieved by proper choice of thend

(s)
Bij -
The rate in question is
5P l0gp®
> |plj nglj _E

5P pi(f)fi(f) M

Letd; = Zs EV|dentIy fora maX|murrpIJ kexpéi(js). The constraints on maximization &yeé’ =
1ypj=1, ZP(pIJ dij) = 0. Hence we maximize

Zplpij IOg plj

U= _—2PiO9P s p N )
> Ppijij Z -+ ) Hibij £ ) 0P (P = dij)
oy MR, (1+logpi)) + NR¢;
o e
opij M2 +A+pi+nP =0
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Solving for pj;
pij = ABjD 1.

Since

Spi=1 A'=yBD"
J J
B;D ‘i

Pij = =5 ==7--

ZSBSD—le

The correct value ob is the capacityC and theB; are solutions of

Bi=Y BjC
for then
Bj .,
Pij = g:C_Z"
BJ 4 _ p.
Z P.EC I =P
or P b
Oty =1
Z BiC B’
So that if\; satisfy
Gl =
R =Bivi.

Both the sets of equations fBr and~; can be satisfied sin€is such that

|C_[ij — dij |=0.
In this case the rate is B B:
_ZP,piongg:C*éiJ _ _ 3Rpijlogg
> Pipijfij > Pipijfij

but
> Ppij(logB; —logB;) =  PjlogB;j — % RilogB; =0
]

Hence the rate i€ and as this could never be exceeded this is the maximunfyjusithe assumed solution.
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PART Ill: MATHEMATICAL PRELIMINARIES

In this final installment of the paper we consider the caserav/lige signals or the messages or both are
continuously variable, in contrast with the discrete na@mssumed heretofore. To a considerable extent the
continuous case can be obtained through a limiting processthe discrete case by dividing the continuum
of messages and signals into a large but finite number of setatins and calculating the various parameters
involved on a discrete basis. As the size of the regions iredsed these parameters in general approach as
limits the proper values for the continuous case. Theretemgever, a few new effects that appear and also
a general change of emphasis in the direction of specializaf the general results to particular cases.

We will not attempt, in the continuous case, to obtain ouultsswith the greatest generality, or with
the extreme rigor of pure mathematics, since this wouldlimva great deal of abstract measure theory
and would obscure the main thread of the analysis. A prelimyistudy, however, indicates that the theory
can be formulated in a completely axiomatic and rigorousmeawhich includes both the continuous and
discrete cases and many others. The occasional liberties teith limiting processes in the present analysis
can be justified in all cases of practical interest.

18. STS AND ENSEMBLES OFFUNCTIONS

We shall have to deal in the continuous case with sets of ifumgtand ensembles of functions. A set of
functions, as the name implies, is merely a class or collaaif functions, generally of one variable, time.
It can be specified by giving an explicit representation ef ¥arious functions in the set, or implicitly by

giving a property which functions in the set possess andrsithe not. Some examples are:

1. The set of functions:
fo(t) = sint +6).

Each particular value df determines a particular function in the set.
2. The set of all functions of time containing no frequenaciesrW cycles per second.
3. The set of all functions limited in band g and in amplitude teé\.
4. The set of all English speech signals as functions of time.

An ensembleof functions is a set of functions together with a probapititeasure whereby we may
determine the probability of a function in the set havingaierproperties. For example with the set,

fo(t) =sin(t+6),

we may give a probability distribution fat, P(6). The set then becomes an ensemble.
Some further examples of ensembles of functions are:

1. Afinite set of functiondy(t) (k= 1,2,...,n) with the probability offy being p.
2. Afinite dimensional family of functions
f(a1,a2,...,an;t)
with a probability distribution on the parameters

p(al: s aOén)-

For example we could consider the ensemble defined by

n

f(a,...,an,01,...,0nt) = Zasini(wt+0i)

with the amplitudes; distributed normally and independently, and the phéséistributed uniformly
(from 0 to 2r) and independently.

1In mathematical terminology the functions belong to a measpace whose total measure is unity.
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3. The ensemble .
* _ sinm(2Wt—n)
f(a,t) = _——=
(&1 nzz_man 7(2Wt—n)
with thea; normal and independent all with the same standard devigfdnThis is a representation
of “white” noise, band limited to the band from O\ cycles per second and with average poNer

4. Let points be distributed on theaxis according to a Poisson distribution. At each selectadtphe
function f(t) is placed and the different functions added, giving the e

[

f(t+1t)

k=—o0

where they are the points of the Poisson distribution. This ensemhtebeaconsidered as a type of
impulse or shot noise where all the impulses are identical.

5. The set of English speech functions with the probabiligasure given by the frequency of occurrence
in ordinary use.

An ensemble of function§, (t) is stationaryif the same ensemble results when all functions are shifted
any fixed amount in time. The ensemble

fa(t) = sin(t +6)
is stationary iff is distributed uniformly from 0 to 2. If we shift each function by, we obtain

fo(t+1t1) =sin(t +t1+6)
=sin(t + ¢)

with ¢ distributed uniformly from 0 to 2. Each function has changed but the ensemble as a whole is
invariant under the translation. The other examples gilbmve are also stationary.

An ensemble iergodicif it is stationary, and there is no subset of the functionshie set with a
probability different from 0 and 1 which is stationary. Thesemble

sin(t +6)

is ergodic. No subset of these functions of probabi#t®, 1 is transformed into itself under all time trans-
lations. On the other hand the ensemble
asin(t +0)

with a distributed normally andé uniform is stationary but not ergodic. The subset of thesetions with
abetween 0 and 1 for example is stationary.

Of the examples given, 3 and 4 are ergodic, and 5 may perhapsrsidered so. If an ensemble is
ergodic we may say roughly that each function in the set ikcaff the ensemble. More precisely it is
known that with an ergodic ensemble an average of any $tatigr the ensemble is equal (with probability
1) to an average over the time translations of a particulactian of the sef. Roughly speaking, each
function can be expected, as time progresses, to go thrautjhthe proper frequency, all the convolutions
of any of the functions in the set.

2This representation can be used as a definition of band tinifsite noise. It has certain advantages in that it invohesgef
limiting operations than do definitions that have been usethé past. The name “white noise,” already firmly entrencimethe
literature, is perhaps somewhat unfortunate. In opticieMight means either any continuous spectrum as contragtbda point
spectrum, or a spectrum which is flat witlavelength(which is not the same as a spectrum flat with frequency).

3This is the famous ergodic theorem or rather one aspect sthliorem which was proved in somewhat different formutetio
by Birkoff, von Neumann, and Koopman, and subsequently dined by Wiener, Hopf, Hurewicz and others. The literaton
ergodic theory is quite extensive and the reader is refdodtle papers of these writers for precise and general fationk; e.g.,
E. Hopf, “Ergodentheorie Ergebnisse der Mathematik und ihrer Grenzgebiet&, “On Causality Statistics and Probabilitydurnal
of Mathematics and Physicg, Xlll, No. 1, 1934; N. Wiener, “The Ergodic Theorenuke Mathematical Journal;. 5, 1939.
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Just as we may perform various operations on numbers oriéunsab obtain new numbers or functions,
we can perform operations on ensembles to obtain new eneemBluppose, for example, we have an
ensemble of function$, (t) and an operatoF which gives for each functiori, (t) a resulting function

Ga (b):
ga(t) =T foz(t)'

Probability measure is defined for the ggtt) by means of that for the sé (t). The probability of a certain
subset of th@, (t) functions is equal to that of the subset of thégt) functions which produce members of
the given subset gf functions under the operatidn Physically this corresponds to passing the ensemble
through some device, for example, a filter, a rectifier or a uhmtdr. The output functions of the device
form the ensemblg, (t).

A device or operator will be called invariant if shifting the input merely shiftise output, i.e., if

(07 (t) =Tf, (t)

implies
Ou(t+t1) =Tf(t+11)

for all f,(t) and allt;. Itis easily shown (see Appendix 5 thafTifis invariant and the input ensemble is
stationary then the output ensemble is stationary. Likewfishe input is ergodic the output will also be
ergodic.

A filter or a rectifier is invariant under all time translatgnThe operation of modulation is not since the
carrier phase gives a certain time structure. However, fatida is invariant under all translations which
are multiples of the period of the carrier.

Wiener has pointed out the intimate relation between thariamce of physical devices under time
translations and Fourier theahyHe has shown, in fact, that if a device is linear as well asriava Fourier
analysis is then the appropriate mathematical tool foridgatith the problem.

An ensemble of functions is the appropriate mathematiqaksentation of the messages produced by
a continuous source (for example, speech), of the signatiuged by a transmitter, and of the perturbing
noise. Communication theory is properly concerned, as &éas bmphasized by Wiener, not with operations
on particular functions, but with operations on ensemblésrations. A communication system is designed
not for a particular speech function and still less for a siwa&e, but for the ensemble of speech functions.

19. BAND LIMITED ENSEMBLES OFFUNCTIONS

If a function of timef (t) is limited to the band from O t@/ cycles per second it is completely determined
by giving its ordinates at a series of discrete points sp@@pdeconds apart in the manner indicated by the
following result®

Theorem 13:Let f(t) contain no frequencies ovéf. Then

sin(2Wt—n)

- 3%
where n
X ="1(zy)

4Communication theory is heavily indebted to Wiener for meglits basic philosophy and theory. His classic NDRC report,
The Interpolation, Extrapolation and Smoothing of StagignTime SeriegWiley, 1949), contains the first clear-cut formulation of
communication theory as a statistical problem, the studypefations on time series. This work, although chiefly comeé with the
linear prediction and filtering problem, is an importantlatral reference in connection with the present paper. \& afso refer
here to Wiener'CyberneticyWiley, 1948), dealing with the general problems of comngation and control.

5For a proof of this theorem and further discussion see tHeoeatpaper “Communication in the Presence of Noise” ptilisin
the Proceedings of the Institute of Radio Engineers37, No. 1, Jan., 1949, pp. 10-21.
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In this expansiorf (t) is represented as a sum of orthogonal functions. The casffeX, of the various
terms can be considered as coordinates in an infinite dimeaisffunction space.” In this space each
function corresponds to precisely one point and each poiobé function.

A function can be considered to be substantially limited toree T if all the ordinatesX, outside this
interval of time are zero. In this case all but\%/ of the coordinates will be zero. Thus functions limited to
a bandV and durationT correspond to points in a space af\® dimensions.

A subset of the functions of bail and duratioriT corresponds to a region in this space. For example,
the functions whose total energy is less than or equiald¢orrespond to points in a2V dimensional sphere
with radiusr = v2WE.

An ensemblef functions of limited duration and band will be represehby a probability distribution
p(xa,...,%n) inthe correspondingdimensional space. If the ensemble is not limited in time areconsider
the ZT'W coordinates in a given interva@lto represent substantially the part of the function in therival T
and the probability distributiop(xs, . ..,X,) to give the statistical structure of the ensemble for irdtrof
that duration.

20. ENTROPY OF ACONTINUOUS DISTRIBUTION

The entropy of a discrete set of probabilitigs. . ., p, has been defined as:

H=—3 pilogpi.

In an analogous manner we define the entropy of a continuatishdition with the density distribution
function p(x) by:

H= —/ p(x) log p(x) dx.
With ann dimensional distributiom(xg, ..., %) we have

H :_/.../p(Xl,...,xn)logp(xl,...,xn)dxl...dxn_

If we have two arguments andy (which may themselves be multidimensional) the joint andditional
entropies ofp(x,y) are given by

H(xy) = —// p(x,y) log p(x,y) dxdy

and
_ p(X,y)
Hx(y) = —// p(x,y)logmdxdy
Hy(x) = —// p(x,y)IOQ%dxdy
where

p(X) = / P(x,y)dy
p(y) = [ pix.y)dx

The entropies of continuous distributions have most (btitalip of the properties of the discrete case.
In particular we have the following:

1. If xis limited to a certain volumein its space, thehl (x) is a maximum and equal to legvhenp(x)
is constant (1v) in the volume.

35



2. With any two variableg, y we have
H(xy) <H(X) +H(y)

with equality if (and only if)x andy are independent, i.ep(x,y) = p(X) p(y) (apart possibly from a
set of points of probability zero).

3. Consider a generalized averaging operation of the fallgwype:

P(v) = [ aley)p(dx

with
/a(x,y)dx= /a(x,y)dy: 1, a(x,y) > 0.

Then the entropy of the averaged distributipity) is equal to or greater than that of the original
distributionp(x).

4. We have
H(X,y) = H(X) + Hx(y) = H(y) + Hy(X)

and

Hx(y) < H(y).

5. Letp(x) be a one-dimensional distribution. The formpgk) giving a maximum entropy subject to the
condition that the standard deviatiomabe fixed atr is Gaussian. To show this we must maximize

H( = — [ p(xlogp(x) dx

with
azz/p(x)xzdx and 1=/p(x)dx

as constraints. This requires, by the calculus of variatiomaximizing

[ T=P(10gp(x)+ APO)R + p(x)] dx.

The condition for this is
—1—logp(x) + ¢+ pu=0

and consequently (adjusting the constants to satisfy thsti@ints)

p(x) — Lef(xz/zaz) .

2o

Similarly in n dimensions, suppose the second order momerg$af. .., X,) are fixed aty;:

A =/---/NXjD(XL---,Xn)Xm"-an-

Then the maximum entropy occurs (by a similar calculationgmp(x,...,%s) is then dimensional
Gaussian distribution with the second order momeéts
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. The entropy of a one-dimensional Gaussian distributibose standard deviationdsis given by
H(x) = logVv2reo.
This is calculated as follows:

1 _(x2/252
Py = e /2

2
—logp(x) = logV270 + >z
H() = - [ PO logp(x)dx
XZ
:/p(x)log\/ﬂadan/p(x)ﬁdx

02
=logVv2ro+ —
202

=logVv'2ro +logve
=logv2neos.
Similarly then dimensional Gaussian distribution with associated quacham &;j is given by
1
_ aijl? 1N o vy
P0G - %0) = 5 exp(~1 3 axx;)

and the entropy can be calculated as
H = log(2re)"?a;; |‘%
wherela;j| is the determinant whose elements age

. If xis limited to a half line p(x) = 0 for x < 0) and the first moment ofis fixed ata:

a= | " p(xxdx

then the maximum entropy occurs when

and is equal to loga

. There is one important difference between the continaodsdiscrete entropies. In the discrete case
the entropy measures in afsoluteway the randomness of the chance variable. In the continuous
case the measurementédative to the coordinate systerf we change coordinates the entropy will

in general change. In fact if we change to coordingies- y, the new entropy is given by

H(y):/.../p(xl,...,xn)J(g) Iogp(xl,...,xn)J(;—(/) dyi - dyn

whereJ (l‘) is the Jacobian of the coordinate transformation. On exipgrtte logarithm and chang-
ing the variables ta; - - - X,, we obtain:

H(y)=H(X)—/---/p(xl,...,xn)log\](;—(/) dxi...dX.
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Thus the new entropy is the old entropy less the expecteditbgeof the Jacobian. In the continuous
case the entropy can be considered a measure of randoralais® to an assumed standaramely

the coordinate system chosen with each small volume elethent- dx, given equal weight. When
we change the coordinate system the entropy in the new syseasures the randomness when equal
volume elementdy; - - - dyn in the new system are given equal weight.

In spite of this dependence on the coordinate system themntoncept is as important in the con-
tinuous case as the discrete case. This is due to the fadhthderived concepts of information rate
and channel capacity depend on tiferenceof two entropies and this differenc®es notdepend
on the coordinate frame, each of the two terms being chang#tetsame amount.

The entropy of a continuous distribution can be negative Jdale of measurements sets an arbitrary
zero corresponding to a uniform distribution over a unitwoé. A distribution which is more confined
than this has less entropy and will be negative. The ratesapalkities will, however, always be non-
negative.

9. A particular case of changing coordinates is the lineardformation
Yi = aijX.
|
In this case the Jacobian is simply the determinaglt * and

H(y) = H(x) +log|aj -

In the case of a rotation of coordinates (or any measure ptiagerransformationy = 1 andH (y) =
H(x).

21. ENTROPY OF ANENSEMBLE OFFUNCTIONS

Consider an ergodic ensemble of functions limited to a oeltand of widthW cycles per second. Let

p(X1,...,%n)

be the density distribution function for amplitudes. .., x, atn successive sample points. We define the
entropy of the ensemble per degree of freedom by

_—%Lrpon/ /pxl, S Xn)logp(Xa, ..., Xn) dX . .. dXn.
We may also define an entropy per second by dividing, not by, but by the timeT in seconds fon
samples. Since=2TW, H = 2WH'.

With white thermal noise is Gaussian and we have

= logVv2reN,
H =W log2reN.

For a given average pow@\, white noise has the maximum possible entropy. This follfwe the
maximizing properties of the Gaussian distribution notedve.

The entropy for a continuous stochastic process has mamggies analogous to that for discrete pro-
cesses. In the discrete case the entropy was related toghstlon of theprobability of long sequences,
and to thenumberof reasonably probable sequences of long length. In théraenis case it is related in
a similar fashion to the logarithm of th@obability densityfor a long series of samples, and tumeof
reasonably high probability in the function space.

More precisely, if we assumgxy, ..., Xn) continuous in all the for all n, then for sufficiently large

Iog p
n

H/
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for all choices of(x1, . ..,X,) apart from a set whose total probability is less thawith § ande arbitrarily
small. This follows form the ergodic property if we dividestepace into a large number of small cells.

The relation ofH to volume can be stated as follows: Under the same assumsptimmsider then
dimensional space correspondingxs,...,X,). LetVy(q) be the smallest volume in this space which
includes in its interior a total probability. Then

Lim 109Va(9) _
n—oc0 n
providedqg does not equal O or 1.

These results show that for largéhere is a rather well-defined volume (at least in the logarit sense)
of high probability, and that within this volume the probi#iidensity is relatively uniform (again in the
logarithmic sense).

In the white noise case the distribution function is given by

1 1
P(X1,...,%n) = 2N exp— -5 ZX'Z'
Since this depends only ozlxi2 the surfaces of equal probability density are spheres amértkire distri-
bution has spherical symmetry. The region of high probibiéi a sphere of radiug/nN. As n — « the
probability of being outside a sphere of radiy#(N + ¢) approaches zero an};dtimes the logarithm of the
volume of the sphere approaches{6greN.

In the continuous case it is convenient to work not with thieagy H of an ensemble but with a derived
guantity which we will call the entropy power. This is defineslthe power in a white noise limited to the
same band as the original ensemble and having the sameeritiaggher words ifH' is the entropy of an
ensemble its entropy power is L

/
Ni = 27Teexp2H .
In the geometrical picture this amounts to measuring the pigbability volume by the squared radius of a
sphere having the same volume. Since white noise has themaaxentropy for a given power, the entropy
power of any noise is less than or equal to its actual power.

22. ENTROPY LOSS INLINEAR FILTERS

Theorem 14:If an ensemble having an entroply per degree of freedom in bakd is passed through a
filter with characteristitY (f) the output ensemble has an entropy

_ 1 2
H2_H1+W/WIog|Y(f)| df.

The operation of the filter is essentially a linear transfation of coordinates. If we think of the different
frequency components as the original coordinate systeametv frequency components are merely the old
ones multiplied by factors. The coordinate transformatiatrix is thus essentially diagonalized in terms
of these coordinates. The Jacobian of the transformati@iaris sine anch cosine components)

Jzﬁmmz

where thef; are equally spaced through the baldThis becomes in the limit

1
exp— | log|Y(f)?df.
Py [ toal¥()
SincelJ is constant its average value is the same quantity and aygplye theorem on the change of entropy

with a change of coordinates, the result follows. We may plsase it in terms of the entropy power. Thus
if the entropy power of the first ensembleNg that of the second is

Nlexpviv/wlog\Y(f)Fdf.
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TABLE |

ENTROPY| ENTROPY
GAIN POWER |POWER GAIN|  IMPULSE RESPONSE
FACTOR |IN DECIBELS
1
1w e :
w > 1 869 sir?(t/2)
2 2/2
0 w 1
1
1-w? ---> 2\4 sint  cost
E (5) | 5% 2| -7
0 w 1
1
1-wd --—> cog—1 cog  sint
i 0411 | -387 6[ o7 t—s]
0 w 1
1
2 --- i 2
Vi-w > (g) 267 ™ du(t)
e 2t
0 w 1
1
|
|
: ! 8.69 ! [cog1- a)t —cogt]
_8 el Calt—
: e at?
~a
0 w 1

The final entropy power is the initial entropy power multggiby the geometric mean gain of the filter. If
the gain is measured ofb, then the output entropy power will be increased by the ard@tic meardb gain
overWw.

In Table | the entropy power loss has been calculated (amdexigressed ib) for a number of ideal
gain characteristics. The impulsive responses of thesesfiétre also given fMV = 2, with phase assumed
to be 0.

The entropy loss for many other cases can be obtained frose ttesults. For example the entropy
power factor Y€ for the first case also applies to any gain characteristiginitom 1—w by a measure
preserving transformation of theaxis. In particular a linearly increasing ga@fw) = w, or a “saw tooth”
characteristic between 0 and 1 have the same entropy lossretiprocal gain has the reciprocal factor.
Thus J/w has the facto€?. Raising the gain to any power raises the factor to this power

23. ENTROPY OF ASUM OF TWO ENSEMBLES

If we have two ensembles of functiofig(t) andgs (t) we can form a new ensemble by “addition.” Suppose
the first ensemble has the probability density funciidry,...,X,) and the second(xy,...,%n). Then the
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density function for the sum is given by the convolution:

0 0) = [ [ PO )AL= Y1, 0= Y) -y

Physically this corresponds to adding the noises or sigeglesented by the original ensembles of func-
tions.
The following result is derived in Appendix 6.

Theorem 15:Let the average power of two ensembledNgeandN, and let their entropy powers bé
andNy. Then the entropy power of the sulN, is bounded by

N1+ N2 <Nz < Ni+ N

White Gaussian noise has the peculiar property that it canrbbany other noise or signal ensemble
which may be added to it with a resultant entropy power apprately equal to the sum of the white noise
power and the signal power (measured from the average sighed, which is normally zero), provided the
signal power is small, in a certain sense, compared to noise.

Consider the function space associated with these ensgrmhléngn dimensions. The white noise
corresponds to the spherical Gaussian distribution irsiége. The signal ensemble corresponds to another
probability distribution, not necessarily Gaussian oresjdal. Let the second moments of this distribution
about its center of gravity b&;. Thatis, if p(Xy,...,X) is the density distribution function

aij =/---/p(x.-—ai)(xj—aj)dxl---dxn

where then; are the coordinates of the center of gravity. Nayvis a positive definite quadratic form, and
we can rotate our coordinate system to align it with the pp@ladirections of this forma;; is then reduced
to diagonal formb;;. We require that each; be small compared ti, the squared radius of the spherical
distribution.
In this case the convolution of the noise and signal prodppecximately a Gaussian distribution whose
corresponding quadratic form is
N + bj.

The entropy power of this distribution is
1/n
[N+ b))

or approximately

1/n

= [N+ 3 by ()]
) 1

The last term is the signal power, while the first is the noiseer.

PART IV: THE CONTINUOUS CHANNEL

24. THE CAPACITY OF A CONTINUOUS CHANNEL

In a continuous channel the input or transmitted signalsheicontinuous functions of timé(t) belonging
to a certain set, and the output or received signals will béupged versions of these. We will consider
only the case where both transmitted and received signalknaited to a certain band/. They can then
be specified, for a tim&, by 2TW numbers, and their statistical structure by finite dimemsialistribution
functions. Thus the statistics of the transmitted sign#lilvei determined by

P(Xla cee :Xn) = P(X)
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and those of the noise by the conditional probability disttion

I:)Xl,...,Xn (y17 .. 7yn) = Px(y)

The rate of transmission of information for a continuousrtied is defined in a way analogous to that
for a discrete channel, namely
R=H(x) —Hy(x)

whereH (x) is the entropy of the input aridy(x) the equivocation. The channel capacitys defined as the
maximum ofR when we vary the input over all possible ensembles. This syt in a finite dimensional
approximation we must vaig(x) = P(xg,...,X,) and maximize

/P ) logP(x dx+//P X,Y) Iog 3/) dxdy

This can be written

/ P(x,y)log ZE )8/) dxdy

using the fact tha}f P(x,y)logP(x) dxdy= /P(x) logP(x)dx. The channel capacity is thus expressed as
follows:

_ y)
IT_mI\F/,IaxT /P (x,y) Iog Py) dxdy

It is obvious in this form thaR andC are mdependent of the coordinate system since the numerato

P(x,y)

and denominator in lo XPY) will be multiplied by the same factors wherandy are transformed in

any one-to-one way. This integral expression@as more general thaH (x) — Hy(x). Properly interpreted
(see Appendix 7) it will always exist whild (x) — Hy(x) may assume an indeterminate foxm- o in some

cases. This occurs, for examplexiis limited to a surface of fewer dimensions tham its n dimensional

approximation.

If the logarithmic base used in computif(x) andHy(x) is two thenC is the maximum number of
binary digits that can be sent per second over the channkelaxdtitrarily small equivocation, just as in
the discrete case. This can be seen physically by dividiegsgface of signals into a large number of
small cells, sufficiently small so that the probability diegn®x(y) of signalx being perturbed to pointis
substantially constant over a cell (eithexalry). If the cells are considered as distinct points the situreits
essentially the same as a discrete channel and the proafshese will apply. But it is clear physically that
this quantizing of the volume into individual points canimofany practical situation alter the final answer
significantly, provided the regions are sufficiently sm@tus the capacity will be the limit of the capacities
for the discrete subdivisions and this is just the contimumapacity defined above.

On the mathematical side it can be shown first (see Appendhxaf)f u is the message,is the signal,

y is the received signal (perturbed by noise) aniglthe recovered message then

H(X) —Hy(x) > H(u) — Hy(u)

regardless of what operations are performedida obtainx or ony to obtainv. Thus no matter how we
encode the binary digits to obtain the signal, or how we dedbd received signal to recover the message,
the discrete rate for the binary digits does not exceed ther capacity we have defined. On the other
hand, it is possible under very general conditions to finddargpsystem for transmitting binary digits at the
rateC with as small an equivocation or frequency of errors as ddsifhis is true, for example, if, when we
take a finite dimensional approximating space for the sigmadtions,P(x,y) is continuous in botlx andy
except at a set of points of probability zero.

An important special case occurs when the noise is addectsiginal and is independent of it (in the
probability sense). TheR(y) is a function only of the difference= (y — x),

Px(y) = Q(y_ X)
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and we can assign a definite entropy to the noise (indepenfi¢in statistics of the signal), namely the
entropy of the distributio®@(n). This entropy will be denoted by (n).

Theorem 16:If the signal and noise are independent and the receivedlsgihe sum of the transmitted
signal and the noise then the rate of transmission is

R=H(y) —H(n),
i.e., the entropy of the received signal less the entroph@hbise. The channel capacity is

C = MaxH(y) —H(n).
P(x)
We have, sincg = X+ n:
H(x,y) =H(x,n).

Expanding the left side and using the fact thandn are independent
H(y) + Hy(x) = H(x) + H(n).

Hence
R=H(x) — Hy(x) = H(y) —H(n).

SinceH (n) is independent dP(x), maximizingR requires maximizingt (y), the entropy of the received
signal. If there are certain constraints on the ensembleaaSimitted signals, the entropy of the received
signal must be maximized subject to these constraints.

25. CHANNEL CAPACITY WITH AN AVERAGE POWER LIMITATION

A simple application of Theorem 16 is the case when the nsisaxhite thermal noise and the transmitted
signals are limited to a certain average poWwerThen the received signals have an average p&wveN
whereN is the average noise power. The maximum entropy for thevedeignals occurs when they also
form a white noise ensemble since this is the greatest gessitropy for a powel + N and can be obtained
by a suitable choice of transmitted signals, namely if thaynfa white noise ensemble of power The
entropy (per second) of the received ensemble is then

H(y) =WIlog2re(P+ N)

and the noise entropy is
H(n) =WIlog2reN.
The channel capacity is
P+N
N

C=H(y)—H(n)=WIlog

Summarizing we have the following:

Theorem 17:The capacity of a channel of bawd perturbed by white thermal noise powémwhen the
average transmitter power is limitedRas given by

P+N
C=WI .
09—
This means that by sufficiently involved encoding systemscae transmit binary digits at the rate

P+N

Wlog, bits per second, with arbitrarily small frequency of erraitsis not possible to transmit at a

higher rate by any encoding system without a definite pasftequency of errors.
To approximate this limiting rate of transmission the traitted signals must approximate, in statistical
properties, a white noise.A system which approaches the ideal rate may be describedllaws: Let

6This and other properties of the white noise case are diedusem the geometrical point of view in “Communication ireth
Presence of Noiselbc. cit.
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M = 2% samples of white noise be constructed each of durdtiohhese are assigned binary numbers from
0 toM — 1. At the transmitter the message sequences are brokenaigroips ofs and for each group
the corresponding noise sample is transmitted as the sigmahe receiver thé/ samples are known and
the actual received signal (perturbed by noise) is comparédeach of them. The sample which has the
least R.M.S. discrepancy from the received signal is chasahe transmitted signal and the corresponding
binary number reconstructed. This process amounts to ofptdse most probablea(posterior) signal.
The numbeM of noise samples used will depend on the tolerable frequenégrrors, but for almost all
selections of samples we have

.. logM(e,T) P+N
LimLim ————= =Wlog——
el—)naTL)nll T 9 N

)

so that no matter how smallis chosen, we can, by taking sufficiently large, transmit as near as we wish

P+N
to TWlog 4[\_|

i P+N . : .
Formulas similar taC = Wlog + for the white noise case have been developed independently

by several other writers, although with somewhat diffeiategrpretations. We may mention the work of
N. Wiener! W. G. Tuller® and H. Sullivan in this connection.

In the case of an arbitrary perturbing noise (not necegsatilte thermal noise) it does not appear that
the maximizing problem involved in determining the charcegacityC can be solved explicitly. However,
upper and lower bounds can be set@in terms of the average noise powéthe noise entropy powe; .
These bounds are sufficiently close together in most prdatases to furnish a satisfactory solution to the
problem.

Theorem 18:The capacity of a channel of bakd perturbed by an arbitrary noise is bounded by the
inequalities

binary digits in the tim€T .

P+Ny P+N
<C<Wilo
Ny — 9 N1

Wlog
where

P = average transmitter power
N = average noise power
N1 = entropy power of the noise.

Here again the average power of the perturbed signals wilt #eN. The maximum entropy for this
power would occur if the received signal were white noise aodld beWlog2re(P+ N). It may not
be possible to achieve this; i.e., there may not be any ensavfitransmitted signals which, added to the
perturbing noise, produce a white thermal noise at thevecdut at least this sets an upper bounH{y).
We have, therefore

C = MaxH(y) —H(n)
<WIlog2re(P+ N) —Wlog 2reN;.

This is the upper limit given in the theorem. The lower limdincbe obtained by considering the rate if we

make the transmitted signal a white noise, of pofen this case the entropy power of the received signal
must be at least as great as that of a white noise of pweN; since we have shown in in a previous

theorem that the entropy power of the sum of two ensemblesestey than or equal to the sum of the

individual entropy powers. Hence

MaxH (y) > Wlog2re(P+ Ny)

"Cybernetics, loc. cit.
8«Theoretical Limitations on the Rate of Transmission ofolmhation,” Proceedings of the Institute of Radio Engineers37,
No. 5, May, 1949, pp. 468-78.
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and

C > WIlog2re(P+ N;) —Wlog2reN
P+ N;
[\

=Wlog

As P increases, the upper and lower bounds approach each atlveg, lsave as an asymptotic rate

P+N

Wlog N
1

If the noise is itself whiteN = N; and the result reduces to the formula proved previously:

C=WIog(1+ g)

If the noise is Gaussian but with a spectrum which is not rezrdyg flat, N; is the geometric mean of
the noise power over the various frequencies in the Wan@hus

N1 = expviv/wlogN(f)df

whereN(f) is the noise power at frequendy
Theorem 19:If we set the capacity for a given transmitter powegqual to
P+N-—n

C=WIlog N
1

thenn is monotonic decreasing Bsincreases and approaches 0 as a limit.
Suppose that for a given power the channel capacity is

PL+N—m

W log N
1

This means that the best signal distribution, gdy), when added to the noise distributigfx), gives a
received distributiom(y) whose entropy power i€ + N —71). Let us increase the power B + AP by
adding a white noise of powetP to the signal. The entropy of the received signal is now attlea

H(y) = Wlog2re(Py + N — 11 + AP)

by application of the theorem on the minimum entropy powea gum. Hence, since we can attain the
H indicated, the entropy of the maximizing distribution mhetat least as great adnust be monotonic
decreasing. To show that— 0 asP — o consider a signal which is white noise with a laRjeWhatever
the perturbing noise, the received signal will be approtatyaa white noise, iP is sufficiently large, in the
sense of having an entropy power approactitAgN.

26. THE CHANNEL CAPACITY WITH A PEAK POWER LIMITATION

In some applications the transmitter is limited not by therage power output but by the peak instantaneous
power. The problem of calculating the channel capacity éntthat of maximizing (by variation of the
ensemble of transmitted symbols)

H(y) —H(n)

subject to the constraint that all the functiof($) in the ensemble be less than or equalA8, say, for all
t. A constraint of this type does not work out as well matheoaéiy as the average power limitation. The

most we have obtained for this case is a lower bound validlfoﬁa an “asymptotic” upper bound (valid

for Iarge%) and an asymptotic value &ffor s small.
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Theorem 20:The channel capaci@ for a bandW perturbed by white thermal noise of poweris
bounded by
2'S
>Wlog—5 —,
€2 Wlog me3 N’

. ) - S
whereS is the peak allowed transmitter power. For sufftc:entlyeaﬁ;

2
254N
C <WlogZ& N (1+e¢)

wheree is arbitrarily small. ASE — 0 (and provided the banli starts af)

C/Wlog<1+§> 51

We wish to maximize the entropy of the received S|gnalﬁlfs large this will occur very nearly when

we maximize the entropy of the transmitted ensemble.

The asymptotic upper bound is obtained by relaxing the ¢mmdi on the ensemble. Let us suppose that
the power is limited t@not at every instant of time, but only at the sample points faximum entropy of
the transmitted ensemble under these weakened condsioagainly greater than or equal to that under the
original conditions. This altered problem can be solvedyathe maximum entropy occurs if the different
samples are independent and have a distribution functiéchigiconstant from-/Sto +1/S. The entropy
can be calculated as

Wlog4S.

The received signal will then have an entropy less than

Wlog(4S+ 2reN)(1+¢)

withe — 0 ass — oo and the channel capacity is obtained by subtracting th@gyf the white noise,

W log 2reN:
2

=S+N
Wlog(4S+ 2reN)(1+ €) — Wlog(2reN) = Wlog % (1+e€).

This is the desired upper bound to the channel capacity.

To obtain a lower bound consider the same ensemble of furctieet these functions be passed through
an ideal filter with a triangular transfer characteristicheTgain is to be unity at frequency 0 and decline
linearly down to gain O at frequendy. We first show that the output functions of the filter have akpea

Lo . . . . sin2rWt . .
power limitationS at all times (not just the sample points). First we note thamlaem going into
i
the filter produces
1siP 7Wt
2 (7Wt)?

in the output. This function is never negative. The inputchion (in the general case) can be thought of as

the sum of a series of shifted functions .
sin2rWt

ai
27Wt

wherea, the amplitude of the sample, is not greater tk@ Hence the output is the sum of shifted functions
of the non-negative form above with the same coefficientes€Hunctions being non-negative, the greatest
positive value for any is obtained when all the coefficierashave their maximum positive values, i.¢/S.

In this case the input function was a constant of amplitW@and since the filter has unit gain for D.C., the
output is the same. Hence the output ensemble has a peak ower
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The entropy of the output ensemble can be calculated fromaothtne input ensemble by using the
theorem dealing with such a situation. The output entrogygisal to the input entropy plus the geometrical

mean gain of the filter:
W W W-—f\2
logG? f:/ log( X1 qf = —aw.
/o 0gG“d A og( W ) d

Hence the output entropy is

Wlog4S— ZN:WIOQ%S

and the channel capacity is greater than
Wiog 2. >
9TeN

We now wish to show that, for sma% (peak signal power over average white noise power), theraan
capacity is approximately

S
C_Wlog<1+ N)'

. S S . . )
More premselyC/WIog <1+ N) -1 asN — 0. Since the average signal powis less than or equal

. S
to the peal§, it follows that for all N
P S
< — | < — .
C _Wlog<1+ N> _Wlog<1+ N>

: , . S
Therefore, if we can find an ensemble of functions such ttest terrespond to a rate neawylog( 1+ N

and are limited to ban@/ and pealSthe result will be proved. Consider the ensemble of funatiofthe
following type. A series of samples have the same value, eithgfSor —+/S, then the next samples have
the same value, etc. The value for a series is chosen at rarmobability% for +v/S and% for —V/S. If
this ensemble be passed through a filter with triangular giadmacteristic (unit gain at D.C.), the output is
peak limited to+S. Furthermore the average power is ne&Bnd can be made to approach this by taking
sufficiently large. The entropy of the sum of this and thertiemoise can be found by applying the theorem
on the sum of a noise and a small signal. This theorem willyaibpl

S
IS

. - . S .
is sufficiently small. This can be ensured by takﬁgsmall enough (afteris chosen). The entropy power
will be S+ N to as close an approximation as desired, and hence the ragamsmission as near as we wish

to SiN
_|_
Wlog<T>.

PART V: THE RATE FOR A CONTINUOUS SOURCE

27. HDELITY EVALUATION FUNCTIONS

In the case of a discrete source of information we were ablgetermine a definite rate of generating
information, namely the entropy of the underlying stocitgstocess. With a continuous source the situation
is considerably more involved. In the first place a contirslpwariable quantity can assume an infinite
number of values and requires, therefore, an infinite nurabbmary digits for exact specification. This
means that to transmit the output of a continuous sourceexlat recoveryt the receiving point requires,
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in general, a channel of infinite capacity (in bits per segoréince, ordinarily, channels have a certain
amount of noise, and therefore a finite capacity, exact in&gsson is impossible.

This, however, evades the real issue. Practically, we areterested in exact transmission when we
have a continuous source, but only in transmission to wigh@ertain tolerance. The question is, can we
assign a definite rate to a continuous source when we requiy@aertain fidelity of recovery, measured in
a suitable way. Of course, as the fidelity requirements aneased the rate will increase. It will be shown
that we can, in very general cases, define such a rate, hawengroperty that it is possible, by properly
encoding the information, to transmit it over a channel vehoapacity is equal to the rate in question, and
satisfy the fidelity requirements. A channel of smaller @dtyds insufficient.

It is first necessary to give a general mathematical forrranatf the idea of fidelity of transmission.
Consider the set of messages of a long duration,Ts@gconds. The source is described by giving the
probability density, in the associated space, that thecgowill select the message in quest(x). A given
communication system is described (from the external pfintew) by giving the conditional probability
P«(y) that if message is produced by the source the recovered message at theinggedint will bey. The
system as a whole (including source and transmission systetascribed by the probability functidx, y)
of having messageand final outpuy. If this function is known, the complete characteristicshaf system
from the point of view of fidelity are known. Any evaluation filelity must correspond mathematically
to an operation applied tB(x,y). This operation must at least have the properties of a sionglering of
systems; i.e., it must be possible to say of two systems septed byP; (x,y) andP,(x,y) that, according to
our fidelity criterion, either (1) the first has higher fidglif2) the second has higher fidelity, or (3) they have
equal fidelity. This means that a criterion of fidelity can bpnesented by a numerically valued function:

V(P(x,y))

whose argument ranges over possible probability functirsy).

We will now show that under very general and reasonable gstons the functiorv(P(x, y)) can be
written in a seemingly much more specialized form, namelgraaverage of a functiop(x,y) over the set
of possible values of andy:

V(P(ey) = [[ Pexy)p(xy) dxdy

To obtain this we need only assume (1) that the source andrsyate ergodic so that a very long sample
will be, with probability nearly 1, typical of the ensembémnd (2) that the evaluation is “reasonable” in the
sense that it is possible, by observing a typical input artgudx; andy;, to form a tentative evaluation
on the basis of these samples; and if these samples aresadrgaduration the tentative evaluation will,
with probability 1, approach the exact evaluation based full&nowledge ofP(x,y). Let the tentative
evaluation bey(x,y). Then the functiom(x,y) approaches (86 — «) a constant for almost afk, y) which
are in the high probability region corresponding to the eyst

p(xy) = V(P(xy))
and we may also write
p(xy) = [[ Pxy)p(x ) dxdy

// P(x,y)dxdy= 1.

This establishes the desired result.

The functiorp(x,y) has the general nature of a “distance” betweandy.® It measures how undesirable
it is (according to our fidelity criterion) to receiyewhenx is transmitted. The general result given above
can be restated as follows: Any reasonable evaluation ceeploesented as an average of a distance function
over the set of messages and recovered messagasy weighted according to the probabiliB(x,y) of
getting the pair in question, provided the durafioof the messages be taken sufficiently large.

The following are simple examples of evaluation functions:

since

9tis not a “metric” in the strict sense, however, since ingait does not satisfy eith@(x,y) = p(y,x) or p(x,y) +p(¥,2) > p(X,2).
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1. R.M.S. criterion.
2
v=(x(t) —y(t))".
In this very commonly used measure of fidelity the distancefion p(x,y) is (apart from a constant

factor) the square of the ordinary Euclidean distance batvitee pointx andy in the associated
function space.

oy = 2 [ x -y o

2. Frequency weighted R.M.S. criterion. More generally care apply different weights to the different
frequency components before using an R.M.S. measure oityid€his is equivalent to passing the
differencex(t) — y(t) through a shaping filter and then determining the averagespowthe output.
Thus let

and

then
1 T
poxy) =7 [ f2dt
T Jo

3. Absolute error criterion. LT
pxy) =7 [ [xO -yt
0

4. The structure of the ear and brain determine implicitig@aluation, or rather a number of evaluations,
appropriate in the case of speech or music transmissionreTigefor example, an “intelligibility”
criterion in whichp(x,y) is equal to the relative frequency of incorrectly interptetvords when
message(t) is received ag(t). Although we cannot give an explicit representatiop©fy) in these
cases it could, in principle, be determined by sufficientgipentation. Some of its properties follow
from well-known experimental results in hearing, e.g.,@heis relatively insensitive to phase and the
sensitivity to amplitude and frequency is roughly logarith.

5. The discrete case can be considered as a specializatidriah we have tacitly assumed an evaluation
based on the frequency of errors. The funciidr y) is then defined as the number of symbols in the
sequence differing from the corresponding symbolsxrdivided by the total number of symbols in
X.

28. THE RATE FOR A SOURCE RELATIVE TO A FIDELITY EVALUATION

We are now in a position to define a rate of generating infoiondbr a continuous source. We are given
P(x) for the source and an evaluatigrdetermined by a distance functigifix,y) which will be assumed
continuous in bottkx andy. With a particular systerR(x,y) the quality is measured by

v= [ pxy)Pix.y) axay

Furthermore the rate of flow of binary digits correspondmBx,y) is

_ P(x.y)
R= // P(xy) |OQW dxdy

We define the rat®; of generating information for a given quality of reproduction to be the minimum of
Rwhen we keep fixed atv; and varyPx(y). That is:

_ M P(x.y)
Ry = Igil(l}r/; //P(x,y)logmdxdy
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subject to the constraint:

vi= // P(x,y)p(x,y) dxdy

This means that we consider, in effect, all the communicasigstems that might be used and that
transmit with the required fidelity. The rate of transmissio bits per second is calculated for each one
and we choose that having the least rate. This latter rateeisate we assign the source for the fidelity in
guestion.

The justification of this definition lies in the following rels:

Theorem 21:If a source has a raf®, for a valuationv it is possible to encode the output of the source
and transmit it over a channel of capadltyvith fidelity as neax, as desired providedy < C. This is not
possible iRy > C.

The last statement in the theorem follows immediately fromdefinition ofR; and previous results. If
it were not true we could transmit more th@rbits per second over a channel of capa€ityThe first part
of the theorem is proved by a method analogous to that usethieorem 11. We may, in the first place,
divide the(x,y) space into a large number of small cells and represent th&tisih as a discrete case. This
will not change the evaluation function by more than an aabily small amount (when the cells are very
small) because of the continuity assumed6x,y). Suppose thaPi(x,y) is the particular system which
minimizes the rate and givéy. We choose from the high probabilifis a set at random containing

2(Ru+e)T

members where — 0 asT — «. With largeT each chosen point will be connected by a high probability
line (as in Fig. 10) to a set ofs. A calculation similar to that used in proving Theorem hbws that with
largeT almost allx’s are covered by the fans from the choggmoints for almost all choices of thes. The
communication system to be used operates as follows: Tketedl points are assigned binary numbers.
When a messageis originated it will (with probability approaching 1 85— o) lie within at least one
of the fans. The corresponding binary number is transm{ttedne of them chosen arbitrarily if there are
several) over the channel by suitable coding means to giuga#l probability of error. Sinc&; < C this is
possible. At the receiving point the correspondjrig reconstructed and used as the recovered message.

The evaluation/} for this system can be made arbitrarily closevioby taking T sufficiently large.
This is due to the fact that for each long sample of mesgé&gend recovered messagg) the evaluation
approachesg; (with probability 1).

It is interesting to note that, in this system, the noise eréicovered message is actually produced by a
kind of general quantizing at the transmitter and not preduzy the noise in the channel. It is more or less
analogous to the quantizing noise in PCM.

29. THE CALCULATION OF RATES

The definition of the rate is similar in many respects to thiinit@n of channel capacity. In the former

y)
R= Mln/ P(x,y)lo dxd
A T Rt

with P(x) andvy = / P(x,y)p(x,y) dxdyfixed. In the latter

C= Max/ P(x,y) Iog )8/) dxdy

with P(y) fixed and possibly one or more other constraints (e.g., aragegpower limitation) of the form

K= [JP(Xxy)A(xy) dxdy
A partial solution of the general maximizing problem forel@hining the rate of a source can be given.
Using Lagrange’s method we consider

//[ (¥)109 5555 ’&)wp(x V)p(%.y) +r()PY) | dxdy
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The variational equation (when we take the first variatiofP@ry)) leads to
Ry(x) = B(x)e™ 7Y

where) is determined to give the required fidelity aBk) is chosen to satisfy
/B(x)e‘*"(xvy) dx=1.

This shows that, with best encoding, the conditional prditalof a certain cause for various received
y, By(x) will decline exponentially with the distance functip(x,y) between the andy in question.

In the special case where the distance functioqy) depends only on the (vector) difference betwgen
andy,

p(xy) = p(x—y)
we have
/B(x)e*’\p()‘*W dx=1.
HenceB(x) is constant, saw, and
Py(X) = ag Y,

Unfortunately these formal solutions are difficult to exatkiin particular cases and seem to be of little value.
In fact, the actual calculation of rates has been carriedoonly a few very simple cases.

If the distance functiop(x,y) is the mean square discrepancy betweandy and the message ensemble
is white noise, the rate can be determined. In that case we hav

R=Min[H(x) — Hy(x)] = H(x) — MaxHy(x)

with N = (x—y)2. But the MaxHy(x) occurs whery — x is a white noise, and is equale log 2reN where
W is the bandwidth of the message ensemble. Therefore

R=Wlog2reQ— W log2reN

:Wllog%

whereQ is the average message power. This proves the following:

Theorem 22:The rate for a white noise source of powgand band\V; relative to an R.M.S. measure
of fidelity is
Q

N
whereN is the allowed mean square error between original and reedveessages.

More generally with any message source we can obtain ingiggdiounding the rate relative to a mean
square error criterion.

Theorem 23:The rate for any source of bakd is bounded by

Q1 Q
N _R_W1|09N

R=W;log

W; log

whereQ is the average power of the sour€g, its entropy power ani the allowed mean square error.

The lower bound follows from the fact that the Mdx(x) for a given(x—y)? = N occurs in the white
noise case. The upper bound results if we place points (ngeé proof of Theorem 21) not in the best way
but at random in a sphere of radiy€ — N.
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APPENDIX 5

Let S; be any measurable subset of thensemble, an&, the subset of thé ensemble which give§;
under the operatiom. Then
S=TS.
LetH* be the operator which shifts all functions in a set by the tim&hen
H'S =HMS=TH'S
sinceT is invariant and therefore commutes with'. Hence ifm[g is the probability measure of the st
mH*S] = MTH*S] = mH*S,)]
= m[S] =m[§]

where the second equality is by definition of measure inglspace, the third since the ensemble is
stationary, and the last by definition @gimeasure again.

To prove that the ergodic property is preserved under iamaibperations, le§; be a subset of thg
ensemble which is invariant under, and letS; be the set of all functions which transform int@;. Then

H'S =H TS =TH'S =5
so thatH*$; is included inS, for all A\. Now, since
mMH*S] = m[S]

this implies
H'S =S
for all A with m[S;] # 0,1. This contradiction shows th&f does not exist.

APPENDIX 6

The upper boundys < N1 + Ny, is due to the fact that the maximum possible entropy for agudw + N
occurs when we have a white noise of this power. In this casemitropy power id; + Np.

To obtain the lower bound, suppose we have two distributions dimensionsp(x;) andq(x) with
entropy powerdN; andN,. What form shouldp andg have to minimize the entropy powdls of their
convolutionr (x;):

r(x) = [ PR — ) dyi.
The entropyHs of r is given by

Hg = —/r(xi)logr(xi)dxi-

We wish to minimize this subject to the constraints
Hy = —/p(Xi) log p(xi) dx

Hy = —/q(xi)logqm)dx-
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We consider then
U =~ [ [r(x)1ogr(x) + Xp(x) log p(x) + () logq(x)] dx
U = / [[1+ logr (x)]8r (x) + A[1+log p()]dp(x) + {1 + logq(x)]dq(x)] dx.
If p(x) is varied at a particular argumegt= s;, the variation irr (x) is
or(x) =a(x —s)

and
/q xi —s)logr(x)dx — Alogp(s) =

and similarly wherg is varied. Hence the conditions for a minimum are

/q X —s)logr(x)dx = —Xlogp(s)

/p s)logr(x) dx = —pulogq(s).
If we multiply the first byp(s) and the second by(s) and integrate with respect pwe obtain
Hz = —AH;
Hz = —puH2

or solving forA andy and replacing in the equations
Hl/q s)logr(x)dx = —Hzlogp(s)
H2/p s)logr(x)dx = —Hslogq(s).

Now suppose(x;) andq(x;) are normal

|Aij\n/2 1

PO) = 7z &P~ 3 Y AiXX
B n/2

ax) = (2;;“/2 exp—3 3 BijXiX;.

Thenr(x;) will also be normal with quadratic for@;;. If the inverses of these forms aag, bij, cij then
Cij = ajj + bij.

We wish to show that these functions satisfy the minimizingditions if and only ifa;j = Kbjj and thus
give the minimunHz under the constraints. First we have

n 1
logr(x) = §|09§|Cij -3 > CijxiXj
n 1
/Q(Xi —s)logr(x)dx = 5logo—|Cij| - 3> Cijssi—3 > Gibij.
This should equal

Hsz[n

|2 IM 2> AijSS

H . , o
—lBij and both equations reduce to identities.

. . H .
which required\j = H—1C|'J'. In this case?; = H
3 2
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APPENDIX 7

The following will indicate a more general and more rigorapproach to the central definitions of commu-
nication theory. Consider a probability measure space e/htesnents are ordered paixsy). The variables

X, y are to be identified as the possible transmitted and recsigedls of some long duration Let us call

the set of all points whosebelongs to a subs&; of x points the strip ove$;, and similarly the set whose

y belong toS; the strip overS,. We dividex andy into a collection of non-overlapping measurable subsets
X; andY; approximate to the rate of transmissidty

TZPX.Y Iog%

where

P(X;) isthe probability measure of the strip ovér
P(Y;) is the probability measure of the strip over
P(X,Y;) is the probability measure of the intersection of the strips

A further subdivision can never decred&e For letX; be divided intoX; = X; + X{' and let

P(Yl) = P(Xl) =b+c
P(X;) =b P(X{,Y1) =d
P(X{) =c P(X{, Y1) =e

P(X1,Y1) =d+e
Then in the sum we have replaced (for e Y; intersection)

d+e
a(b+c)

It is easily shown that with the limitation we have by, d, e,

d e
(d+e)log by dlog%-l-elog&.

d+eldte  gde
i < 2=
[b-l—c} ~ bdce

and consequently the sum is increased. Thus the variousbfssabdivisions form a directed set, with
R monotonic increasing with refinement of the subdivision. M&y defineR unambiguously as the least
upper bound foR; and write it

y)
=7 /P (x,y) Iog Py) dxdy

This integral, understood in the above sense, includesthetbontinuous and discrete cases and of course
many others which cannot be represented in either form. tivigl in this formulation that ifx andu are
in one-to-one correspondence, the rate fiotay is equal to that fronx to y. If vis any function ofy (not
necessarily with an inverse) then the rate freito y is greater than or equal to that fraxto v since, in
the calculation of the approximations, the subdivisiong afe essentially a finer subdivision of those for
v. More generally ify andv are related not functionally but statistically, i.e., wevda@ probability measure
spacqgy, V), thenR(x,v) < R(x,y). This means that any operation applied to the received kigvien though
it involves statistical elements, does not increldse

Another notion which should be defined precisely in an abstfi@mulation of the theory is that of
“dimension rate,” that is the average number of dimensieagiired per second to specify a member of
an ensemble. In the band limited ca®¥ Rumbers per second are sufficient. A general definition can be
framed as follows. Lef,(t) be an ensemble of functions and Jet[f,(t), f5(t)] be a metric measuring
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the “distance” fromf, to fz over the timeT (for example the R.M.S. discrepancy over this interval.j Le
N(e,0,T) be the least number of elemerftavhich can be chosen such that all elements of the ensemble
apart from a set of measufeare within the distanceof at least one of those chosen. Thus we are covering
the space to withim apart from a set of small measureWe define the dimension ratefor the ensemble
by the triple limit
... logN(ed,T
A =Lim Lim Lim M
60 e=0T—w  Tloge
This is a generalization of the measure type definitions wiedision in topology, and agrees with the intu-
itive dimension rate for simple ensembles where the desagdt is obvious.
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