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1.1 Introduction

ALS is a systemic motor neuron disease that affects the corticospinal and corticobulbar tracts, ventral
horn motor neurons, and motor cranial nerve nuclei (405). Approximately 10 percent of ALS cases
are of the familial type that has been linked to a mutation of the copper/zinc super oxide dismustase
gene (Cu/Zn SOD). The majority of ALS cases are of the sporadic type. Based on studies of groups
of monozygous twins, animal studies, and ALS patient case studies, the majority of ALS cases do
not appear to be genetic but rather have primarily environmental related causes often affecting
genetically susceptible individuals (405, 416, 423, 471, 520, 93, 94, 97, 200, 303, 580, 35, etc.).

ALS is not a unique disease with a single cause or factor, but instead is a result of damage to
motorneurons and the support system that they depend on by a variety of factors. Spinal and bulbar-
onset subtypes of the disease appear to be biochemically different and have differences in mechanisms
of causality (416f). Some of the mechanisms of neural damage found in ALS include increased
free radical generation/oxidative damage, impaired electron transport, disrupted calcium channel
function, reactive astrogliosis and dysfunctional transporters for L-glutamate, neurotoxicity, oxidative
damage to mitochondrial DNA/ inhibition of the mitochondrial respiratory chain, autoimmunity,
and generalized disruption of metabolism of neuroexciotoxic amino acids like glutamate, aspartate,
NAAG. The mechanisms by which exposure to mercury and other neurotoxic substances cause all of
this will be documented.

The main factors determining whether chronic conditions are induced by metals appear to be
exposure and genetic susceptibility', which determines individuals immune sensitivity and ability to
excrete and detoxify metals (405, 342, 60, 181, 303, 314, 330, 464). Very low levels of exposure
have been found to seriously affect relatively large groups of individuals who are immune sensitive
to toxic metals, or have an inability to detoxify metals due to such as deficient sulfoxidation or
metallothionein function or other inhibited enzymatic processes related to detoxification or excretion
of metals. Those with the genetic allele ApoE4 protein in the blood have been found to detox metals
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poorly and to be much more susceptible to chronic neurological conditions than those with types
ApoE2 or E3 (437, 577). There are also other similar factors.

Some of the toxic exposures which have been found to be a factor in ALS like symptoms other than
mercury include lead (94a), pyretherins (93), agricultural chemicals (94b), Lyme disease (471, 580),
monosodium glutamate (MSG, 580), failed root canaled teeth? (35, 200, 437), post-poliomyelitis (580),
and smoking (94cd). All have been demonstrated to cause some of the mechanisms of damage listed
above seen in ALS and since such exposures are common as is exposure to mercury, such exposures
appear to synergistically cause the types of damage seen in ALS. This paper will demonstrate that
mercury is the most common of toxic substances which are documented to accumulate through
chronic exposure in the neurons affected by ALS and which have been documented to cause all
of the conditions and symptoms seen in ALS. It will also be noted that chronic infections such as
mycoplasma, echo-7 enterovirus, and candida albicans also usually affect those with chronic immune
deficiencies such as ALS patients and need to be dealt with in treatment. Some studies have also
found persons with chronic exposure to electromagnetic fields (EMF?®) to have higher levels of mercury
exposure and excretion (28) and higher likelihood of getting chronic conditions like ALS (526).

1.2 Documentation of High Common Exposures and Accumulation of

Mercury in Motor Neurons
Amalgam dental fillings are the largest source® of mercury in most people with daily exposures
documented to commonly be above government health guidelines (49, 79, 183, 506, 599, 600). This
is due to continuous vaporization of mercury from amalgam in the mouth, along with galvanic
currents from mixed metals in the mouth that deposit the mercury in the gums and oral cavity
(600). Mercury has been found in autopsy studies to accumulate in the brain of those with chronic
exposures, and levels are directly proportional to the number of amalgam filling surfaces (85, 270).
Due to the high daily mercury exposure and excretion into home and business sewers of those with
amalgam, dental amalgam is also the largest source of the high levels of mercury found in all sewers
and sewer sludge®, and thus according to government studies a significant source of mercury in rivers,
lakes, bays, fish, and crops (603). People also get significant exposure from vaccinations, fish, and
dental office vapor (600).

When amalgam was placed into teeth of monkeys and rats, within one year mercury was found
to have accumulated in the brain, trigeminal ganglia, spinal ganglia, kidneys, liver, lungs, hormone
glands, and lymph glands (20). People also commonly get exposures to mercury and other toxic
metals such as lead, arsenic, nickel, and aluminum from food, water, and other sources (601). All
of these are highly neurotoxic and are documented to cause neurological damage which can result in
chronic neurological conditions over time.

Mercury has been found to accumulate preferentially in the primary motor function related areas
involved in ALS- such as the brain stem, cerebellum, rhombencephalon, dorsal root ganglia, and
anterior horn motor neurons, which enervate the skeletal muscles (20, 291, 327, 329, 442, 48).

Mercury, with exposure either to vapor or organic mercury tends to accumulate in the glial cells
in a similar pattern, and the pattern of deposition is the same as that seen from morphological
changes (327g, 287, 305). Though mercury vapor and organic mercury readily cross the blood-brain
barrier, mercury has been found to be taken up into neurons of the brain and CNS without having
to cross the blood-brain barrier, since mercury has been found to be taken up and transported
along nerve axons as well through calcium and sodium channels and along the olfactory path (329,
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288, 333, 34). Exposure to inorganic mercury has significant effects on blood parameters and liver
function. Studies have found that in a dose dependent manner, mercury exposure causes reductions
in oxygen consumption and availability, perfusion flow, biliary secretion, hepatic ATP concentration,
and cytochrome P450 liver content (260), while increasing blood hemolysis products and tissue
calcium content and inducing heme oxygenase, porphyria, platelet aggregation through interfering
with the sodium pump.

1.3 Effects of Exposure to Mercury and Toxic Metals

A direct mechanism involving mercury’s inhibition of cellular enzymatic processes by binding with the
hydroxyl radical (SH) in amino acids appears to be a major part of the connection to allergic/immune
reactive/ conditions such as eczema, psoriasis, rheumatoid arthritis, Lupus, Scleroderma, allergies,
autism, schizophrenia, (114c, 181, 303, 330, 331, 411, 412, 152b, 439, 602, 601), as well as to
autoimmune conditions such as ALS, Alzheimer’s® (AD), Chronic Fatigue’ (CFS), Fibromyalgia®
(FM), etc. (405, 342, 60, 181, 303, 314b, 513, 580, etc.). For example mercury has been found
to strongly inhibit the activity of dipeptyl peptidase (DPP IV) which is required in the digestion
of the milk protein casein (411, 412) as well as of xanthine oxidase (439) Additional cellular level
enzymatic effects of mercury’s binding with proteins include blockage of sulfur oxidation processes
(33, 114c, 194, 330, 331, 412), enzymatic processes involving vitamins B6 (417) and B12 (418),
effects on the cytochrome-C energy processes (43, 84, 232, 338¢, 35), along with mercury’s adverse
effects on cellular mineral levels of calcium, magnesium, copper, zinc, and lithium (43b, 96, 198,
333, 338, 386, 427, 430, 432, 461, 489, 507). And along with these blockages of cellular enzymatic
processes, mercury has been found to cause additional neurological and immune system effects in
many by causing immune/ autoimmune reactions (60, 152¢, 181, 288c, 314, 342, 405, 513). Recent
studies gives a comprehensive review of studies finding a connection between ALS, toxic metals,
and autoimmunity (405, 580). Studies have found the presence of antibiodies in ALS patients that
interact with motor neurons, inhibiting the sprouting of axons. Immune complexes have also been
found in the spinal cords of ALS patients (580). T cells, activated microglia, and IgG within the
spinal cord may be a primary event that leads to lesions and tissue destruction.

Oxidative stress and reactive oxygen species (ROS) have been implicated as major factors in
neurological disorders including ALS, motor neuron disease (MND), CFS, FM, Parkinson’s (PD),
Multiple Sclerosis (MS), and Alzheimer’s (AD) (13, 43, 56, 84, 145, 169, 207b, 424, 442-444, 453,
462, 496, 577). Mercury forms conjugates with thiol compounds such as glutathione and cysteine
and causes depletion of glutathione (56), which is necessary to mitigate reactive damage. One study
found that insertion of amalgam fillings or nickel dental materials causes a suppression of the number
of T-lymphocytes (270), and impairs the T-4/T-8 ratio. Low T4/T8 ratio has been found to be a
factor in autoimmune conditions. Mercury induced lipid peroxidation has been found to be a major
factor in mercury’s neurotoxicity, along with leading to decreased levels of glutathione peroxidation
and superoxide dismustase (SOD) (13, 254, 490, 494-496). Only a few micrograms of mercury
severely disturb cellular function and inhibits nerve growth (305, 147, 175, 226, 255). Metalloprotein
(MT) have a major role in regulation of cellular copper and zinc metabolism, metals transport and
detoxification, free radical scavenging, and protection against inflammation (114, 442, 464, 602).
Mercury inhibits sulfur ligands in MT and in the case of intestinal cell membranes inactivates MT
that normally bind cuprous ions (477, 114), thus allowing buildup of copper to toxic levels in many
and malfunction of the Zn/Cu SOD function (495, 13a, 443). Mercury also causes displacement of
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zinc in MT and SOD, which has been shown to be a factor in neurotoxicity and neuronal diseases (405,
495, 517). Exposure to mercury results in changes in metalloprotein compounds that have genetic
effects, having both structural and catalytic effects on gene expression (114, 241, 296, 442, 464, 477,
495, 517). Some of the processes affected by such MT control of genes include cellular respiration,
metabolism, enzymatic processes, metal-specific homeostasis, and adrenal stress response systems.
Significant physiological changes occur when metal ion concentrations exceed threshold levels. Such
MT formation also appears to have a relation to autoimmune reactions in significant numbers of
people (114, 60, 342, 369, 442, 464). Of a population of over 3000 tested by the immune lymphocyte
reactivity test (MELISA, 60, 342), 22% tested positive for inorganic mercury and 8% for methyl
mercury, but much higher percentages tested positive among autoimmune condition patients. In the
MELISA laboratory, 12 out of 13 ALS patients tested showed positive immune reactivity lymphocyte
responses to metals in vitro [60c], indicating metals reactivity a likely major factor in their condition.
A recent study assessed the possible causes of high ALS rates in Guam and similar areas and the
recent, decline in this condition. One of the studies conclusions was that a likely major factor for the
high ALS rates in Guam and similar areas in the past was chronic dietary deficiency since reduced Ca,
Mg and Zn induced excessive absorption of divalent metal cations such as mercury which accelerates
oxidant-mediated neuronal degenerations in a genetically susceptible population (466). The Veterans
Administration concluded that higher levels of veterans of Gulf War I than normal contracted ALS
(580). These veterans were subjected to large exposures of toxic metals in vaccines and other toxic
exposures and there is evidence that aluminum hydroxide in vaccines can cause symptoms seen in

ALS (582).

Programmed cell death (apoptosis) is documented to be a major factor in degenerative neurological
conditions like ALS, Alzheimer’s, MS, Parkinson’s, etc. Some of the factors documented to be
involved in apoptosis of neurons and immune cells include inducement of the inflammatory cytokine
Tumor Necrosis Factor-alpha (TNFa) (126), reactive oxygen species and oxidative stress (13, 43a,
56a, 296h, 495), reduced glutathione levels (56, 126a, 111a), liver enzyme effects and inhibition of
protein kinase C and cytochrome P450 (43, 84, 260), nitric oxide and peroxynitrite toxicity (43a, 521,
524), excitotoxicity and lipid peroxidation (490, 496), excess free cysteine levels (56d, 111a, 33, 330),
excess glutamate toxicity (416, 13b), excess dopamine toxicity (56d, 13a), beta-amyloid generation
(462, 56a), increased calcium influx toxicity (296b, 333, 416, 432, 462¢, 507) and DNA fragmentation
(296, 42, 114, 142) and mitochondrial membrane dysfunction (56de, 416).

Chronic neurological conditions such as ALS appear to be primarily caused by chronic or acute
brain inflammation. The brain is very sensitive to inflammation. Disturbances in metabolic networks:
e.g., immuno-inflammatory processes, insulin-glucose homeostasis, adipokine synthesis and secretion,
intra-cellular signaling cascades, and mitochondrial respiration have been shown to be major factors
in chronic neurological conditions (592, 593, 598, 580, etc.). Inflammatory chemicals such as mercury,
aluminum, and other toxic metals as well as other excitotoxins including MSG and aspartame cause
high levels of free radicals, lipid peroxidation, inflammatory cytokines, and oxidative stress in the
brain and cardiovascular systems (13, 582, 595-598, etc.)

In amyotrophic lateral sclerosis (ALS) non-neuronal cells play key roles in disease etiology and
loss of motoneurons via noncell-autonomous mechanisms. Reactive astrogliosis and dysfunctional
transporters for L-glutamate are common hallmarks of ALS pathology (416d). Oxidative and exci-
totoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters
in the progression of ALS. Excitotoxicity in ALS affects both motor neurons and astrocytes, favour-
ing their local interactive degeneration. Mercury and other toxic metals inhibit astrocyte function
in the brain and CNS (119), causing increased glutamate and calcium related neurotoxicity (119,
333, 416, 496). Mercury and increased glutamate in the plasma activate free radical forming pro-
cesses like xanthine oxidase which produce oxygen radicals and oxidative neurological damage (142,
416, 13). Nitric oxide related toxicty caused by peroxynitrite formed by the reaction of NO with
superoxide anions, which results in nitration of tyrosine residues in neurofilaments and manganese



Superoxide Dimustase (SOD) has been found to cause inhibition of the mitochondrial respiratory
chain, inhibition of the glutamate transporter, and glutamate-induced neurotoxicity involved in ALS
(524, 521). A recent study has linked some cases of sporadic ALS with the failure to edit key residues
in ionotropic glutamate receptors, resulting in excessive influx of calcium ions into motor neurones
which in turn triggers cell death. The study suggests that edited AMPA glutamate (GluR2) receptor
subunits serve as gatekeepers for motor neurone survival. (525)

These inflammatory processes damage cell structures including DNA, mitochondria, and cell mem-
branes. They also activate microglia cells in the brain, which control brain inflammation and immu-
nity. Once activated, the microglia secrete large amounts of neurotoxic substances such as glutamate,
an excitotoxin, which adds to inflammation and stimulates the area of the brain associated with anxi-
ety (598). Inflammation also disrupts brain neurotransmitters resulting in reduced levels of serotonin,
dopamine, and norepinephrine. Some of the main causes of such disturbances that have been docu-
mented include vaccines, mercury, aluminum, other toxic metals, MSG, aspartame, etc. (582, 593,
598, 600, etc.) High levels of aluminum exposure along with low levels of other minerals such as
calcium and magnesium have been documented to cause neurological degeneration and appear to be
the cause of high ALS and Parkinson’s in the past in Guam (518). There is evidence that aluminum
hydroxide in vaccines can cause symptoms such as those seen in ALS (582). Aluminum has been

found to be a factor in some Alzheimer’s’ and Parkinson’s'® cases.

Programmed cell death (apoptosis) is documented to be a major factor in degenerative neuro-
logical conditions like ALS, Alzheimer’s, MS, Parkinson’s, etc. Some of the factors documented to
be involved in apoptosis of neurons and immune cells include mitochondrial membrane dysfunction
(56bc, 416). Mitochondrial DNA mutations or dysfunction is fairly common, found in at least 1 in
every 200 people (275), and toxicity effects affect this population more than those with less suscepti-
bility to mitochondrial dysfunction. Mercury depletion of GSH and damage to cellular mitochrondria
and the increased lipid peroxidation in protein and DNA oxidation in the brain appear to be a major
factor in conditions such as ALS, Parkinson’s disease, autism, etc. (33, 56, 416, 442).

Reduced levels of magnesium and zinc are related to metabolic syndrome, insulin resistance, and
brain inflammation and are protective against these conditions (595, 43). Mercury and cadmium
inhibiting magnesium and zinc levels as well as inhibiting glucose transfer are other mechanisms by
which mercury and toxic metals are factors in metabolic syndrome and insulin resistance/diabetes
(43, 196, 338, 580, 597).

TNFa (tumor necrosis factor-alpha) is a cytokine that controls a wide range of immune cell re-
sponse in mammals, including cell death (apoptosis). This process is involved in inflammatory and
degenerative neurological conditions like ALS, MS, Parkinson’s, rheumatoid arthritis, etc. Cell sig-
naling mechanisms like sphingolipids are part of the control mechanism for the TNFa apoptosis
mechanism (126a). glutathione is an amino acid that is a normal cellular mechanism for controlling
apoptosis. When glutathione is depleted in the brain, reactive oxidative species increased, and CNS
and cell signaling mechanisms are disrupted by toxic exposures such as mercury, neuronal cell apop-
tosis results and neurological damage. Mercury has been shown to induce TNFa, deplete glutathione,
and increase glutamate, dopamine, and calcium related toxicity, causing inflammatory effects and
cellular apoptosis in neuronal and immune cells (126b, 126¢). Mercury’s biochemical damage at the
cellular level include DNA damage, inhibition of DNA and RNA synthesis (42, 114, 142, 197, 296,
392); alteration of protein structure (33, 111, 114, 194, 252, 442); alteration of the transport and
signaling functions of calcium (333, 43b, 254, 416d, 462, 507); inhibitation of glucose transport (338,
254, 580), and of enzyme function and transport of other essential nutrients (96, 198, 254, 263, 264,
33, 330, 331, 339, 347, 441, 442); induction of free radical formation (13a, 43b, 54, 405, 424), deple-
tion of cellular glutathione (necessary for detoxification processes) (56, 111, 126, 424), inhibition of
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glutathione peroxidase enzyme (13a, 442), inhibits glutamate uptake (119, 416), induces peroxyni-
trite and lipid peroxidation damage (521b), causes abnormal migration of neurons in the cerebral
cortex (149), immune system damage (111, 194, 226, 252, 272, 316, 325, 355); inhibits functional
methylation (504), inducement of inflammatory cytokines (126, 152, 181) and autoimmunity (226,
272, 369, 405, etc.)

Exposure to mercury vapor and methyl mercury is well documented to commonly cause condi-
tions involving tremor, with populations exposed to mercury experiencing tremor levels on average
proportional to exposure level (250, 565). However bacteria, yeasts, and Vitamin B12 methylate
inorganic mercury to methyl mercury in the mouth and intestines (599, 505) and mercury inhibits
functional methylation in the body, a necessary process (504).

Mercury exposure causes high levels of oxidative stress/ reactive oxygen species (ROS) (13), which
has been found to be a major factor in apoptosis and neurological disease (56, 250, 441, 442, 443,
13) including dopamine or glutamate related apoptosis (288c).

Mercury and quinones form conjugates with thiol compounds such as glutathione and cysteine
and cause depletion of glutathione, which is necessary to mitigate reactive damage. Such conjugates
are found to be highest in the brain substantia nigra with similar conjugates formed with L-Dopa and
dopamine in Parkinson’s disease (56). Mercury depletion of GSH and damage to cellular mitochondria
and the increased lipid peroxidation in protein and DNA oxidation in the brain appear to be a major
factor in Parkinson’s disease (33, 56, 442) and a factor in other neurological conditions.

Mercury blocks the immune function of magnesium and zinc (198, 427, 38), whose deficiencies
are known to cause significant neurological effects (461, 463, 430, 601). The low Zn levels result in
deficient CuZnSuperoxide dismustase (CuZnSOD), which in turn leads to increased levels of super-
oxide due to toxic metal exposure. This is in addition to mercury’s effect on metallothionein and
copper homeostasis as previously discussed (477). Copper is an essential trace metal which plays a
fundamental role in the biochemistry of the nervous system (477, 489, 495, 463, 464). Several chronic
neurological conditions involving copper metabolic disorders are well documented like Wilson’s Dis-
ease and Menkes Disease. Mutations in the copper/zinc enzyme superoxide dismustase (SOD) have
been shown to be a major factor in the motor neuron degeneration in conditions like familial ALS
(580). Exposures to toxic metals such as mercury and cadmium have been found to cause such
effects (13a, 495, 517, etc.) and similar effects on Cu/Zn SOD have been found to be a factor in
other conditions such as autism, Alzheimer’s, Parkinson’s, and non-familial ALS (489, 490, 495, 464,
469, 111). This condition can result in zinc deficient SOD and oxidative damage involving nitric
oxide, peroxynitrite, and lipid peroxidation (490, 495, 496, 489, 521, 524), which have been found
to affect glutamate mediated excitability and apoptosis of nerve cells and effects on mitochondria
(119¢, 412, 416, 495, 496, 502, 519, 524). These effects can be reduced by zinc supplementation (464,
495, 517, 430), as well as supplementation with antioxidants and nitric oxide-suppressing agents and
peroxynitrite scavengers such as Vit C, Vit E, lipoic acid, Coenzyme Q10, carnosine, gingko biloba,
N-acetyl cysteine, melatonin, etc. (444, 464, 494, 495, 469, 470, 521, 524, 572). Ceruloplasmin in
plasma can be similarly affected by copper metabolism dysfunction, like SOD function, and is often
a factor in neurodegeneration (489).

Motor neuron dysfunction and loss in amyotrophic lateral sclerosis (ALS) have been attributed to
several different mechanisms, including increased intracellular calcium (333, 496, 507), glutamate dys-
regulation and excitotoxicity (119¢, 412, 416, 496, 502), oxidative stress and free radical damage (13,
43, 56, 442, 490), nitric oxide related toxicity caused by peroxynitrite (524, 521), mitochondrial dam-
age/dysfunction (519), neurofilament aggregation and dysfunction of transport mechanisms (507),
and autoimmunity (313, 314, 369, 405, 513). These alterations and effects are not mutually exclusive
but rather are synergistic, and increased calcium and altered calcium homeostasis appears to be a
common denominator. Mercury forms strong bonds with the-SH groups of proteins causing alter-
ation of the transport of calcium (333, 43, 96, 254, 329, 432, 496) and causes mitochondrial release



of calcium (21, 35, 43, 329, 333, 432, 496, 519). This results in a rapid and sustained elevation in
intracellular levels of calcium (333, 496). Calcium plays a major role in the extreme neurotoxicity
of mercury and methyl mercury. Both inhibit cellular calcium ATPase and calcium uptake by brain
microsomes at very low levels of exposure (270, 288, 329, 333, 432, 56,). Protein Kinase C (PKC)
regulates intracellular and extra cellular signals across neuronal membranes, and both forms of mer-
cury inhibit PKC at micro molar levels, as well as inhibiting phorbal ester binding (43, 432). They
also block or inhibit calcium L-channel currents in the brain in an irreversible and concentration
dependent manner. Mercury vapor or inorganic mercury exposure affects the posterior cingulate
cortex and causes major neurological effects with sufficient exposure (428, 453). Metallic mercury
is much more potent than methyl mercury in such actions, with 50% inhibition in animal studies
at 13 ppb (333, 329). Mercury is seen to be a factor in all of these known mechanisms of neural
degeneration seen n ALS and other motor neuron conditions.

Spatial and temporal changes in intracellular calcium concentrations are critical for controlling
gene expression and neurotransmitter release in neurons (432, 496, 43, 114). Mercury alters calcium
homeostasis and calcium levels in the brain and affects gene expression and neurotransmitter release
through its effects on calcium, etc. Mercury inhibits sodium and potassium (N, K) ATPase in dose
dependent manner and inhibits dopamine and noreprenephrine uptake by synaptosomes and nerve
impulse transfer (288, 270, 56, 43, 35). Mercury also interrupts the cytochrome oxidase system,
blocking the ATP energy function (35, 43, 84), lowering immune growth factor IGF-I levels and
impairing astrocyte function (119, 152, 416d, 497). Astrocytes are common cells in the CNS involved
in the feeding and detox of nerve cells. Increases in inflammatory cytokines such as caused by toxic
metals trigger increased free radical activity and damage to astrocyte and astrocyte function (152,
416d). IGF-I protects against brain and neuronal pathologies like ALS, MS, and Fibromyalgia by
protecting the astrocytes from this destructive process.

Na (+), K (+)-ATPase is a transmembrane protein that transports sodium and potassium ions
across cell membranes during an activity cycle that uses the energy released by ATP hydrolysis.
Mercury is documented to inhibit Na (+), K (4+)-ATPase function at very low levels of exposure
(288ab). Studies have found that in ALS cases there was a reduction in serum magnesium and RBC
membrane Na (+)-K+ ATPase activity and an elevation in plasma serum digoxin (263, 260d). The
activity of all serum free-radical scavenging enzymes, concentration of glutathione, alpha tocopherol,
iron binding capacity, and ceruloplasmin decreased significantly in ALS, while the concentration of
serum lipid peroxidation products and nitric oxide increased. The inhibition of Na+-K+ ATPase
can contribute to increase in intracellular calcium and decrease in magnesium, which can result
in 1) defective neurotransmitter transport mechanism, 2) neuronal degeneration and apoptosis, 3)
mitochondrial dysfunction, 4) defective golgi body function and protein processing dysfunction. It
is documented in this paper that mercury is a cause of most of these conditions seen in ALS (13a,
111, 288, 442, 521b, 43, 56, 263, etc.)

Mercury exposure also degrades the immune system resulting in more susceptibility to viral,
bacterial, or parasitic effects along with candida albicans which are often present in those with
chronic conditions and require treatment (404, 468, 470, 485, 600). Four such commonly found
in ALS patients are mycoplasma AND echo-7 enterovirus (468, 470), candida albicans (404), and
parasites (485). One clinic found that over 85% of patients with ALS tested have mycoplasma
infection, often M. Pneumoniae (470), but in Gulf War veterans mostly a manmade variety used in
bioterrorism agents-M. fermentans. Mercury from amalgam interferes with production of cytokines
that activate macrophage and neutrophils, disabling early control of viruses or other pathogens and
leading to enhanced infection (131). While the others are also being commonly found, mycoplasma
has been found in 85% of ALS patients by clinics treating such conditions (470). Mycoplasma appears
to be a cofactor with mercury in the majority of cases and shifts the immune T cell balance toward
inflammatory cytokines (470b). Treatment of these chronic infections are required and documented
to cause improvement in such patients (470).



Mercury lymphocyte reactivity and effects on amino acids such as glutamate in the CNS induce
CFS type symptoms including profound tiredness, musculoskeletal pain, sleep disturbances, gastroin-
testinal and neurological problems along with other CFS symptoms and Fibromyalgia'' (346, 342,
369, 416, 496, 513, 119b, 152, 314). Mercury has been found to be a common cause of Fibromyalgia
(293, 346, 369), which based on a Swedish survey occurs in about 12% of women over 35 and 5.5%
of men (342). ALS patients have been found to have a generalized deficiency in metabolism of the
neuroexcitotoxic amino acids like glutamate, aspartate, NAAG, etc.(416). Glutamate is the most
abundant amino acid in the body and in the CNS acts as excitory neurotransmitter (346, 412, 416,
438, 496, 119¢), which also causes inflow of calcium. Astrocytes, a type of cell in the brain and CNS
with the task of keeping clean the area around nerve cells, have a function of neutralizing excess
glutamate by transforming it to glutamic acid. If astrocytes are not able to rapidly neutralize excess
glutamate, then a buildup of glutamate and calcium occurs, causing swelling and neurotoxic effects
(119, 152, 333, 416, 496, 524). Mercury and other toxic metals inhibit astrocyte function in the
brain and CNS (119, 152, 416), causing increased glutamate and calcium related neurotoxicity (119,
152, 333, 226a, 496) which are responsible for much of the Fibromyalgia symptoms and a factor in
neural degeneration in MS and ALS. This is also a factor in conditions such as CFS, Parkinson’s, and
ALS (346, 416, 496, 524, 600). Animal studies have confirmed that increased levels of glutamate (or
aspartate, another amino acid excitory neurotransmitter) cause increased sensitivity to pain, as well
as higher body temperature-both found in CFS/Fibromyalgia. Mercury and increased glutamate
activate free radicals forming processes like xanthine oxidase which produce oxygen radicals and
oxidative neurological damage (346, 142, 13). Nitric oxide related toxicty caused by peroxynitrite
formed by the reaction of NO with superoxide anions, which results in nitration of tyrosine residues
in neurofilaments and manganese Superoxide Dimustase (SOD) has been found to cause inhibition of
the mitochondrial respiratory chain, inhibition of the glutamate transporter, and glutamate-induced
neurotoxicity involved in ALS (524, 521).

In addition to the documentation showing the mechanisms by which mercury causes the conditions
and symptoms seen in ALS and other neurodegenerative diseases, many studies of patients with major
neurological or degenerative diseases have found direct evidence mercury and amalgam fillings play
a major role in development of conditions such as such as ALS (92, 97, 207, 229b, 305, 325, 327,
416, 423, 442, 468, 470, 520, 35). Such supplements including N-acetylcysteine (NAC), Vitamins E
and C, zinc, and creatinine have been found to offer significant protection against cell apoptosis and
neurodegeneration in neurological conditions such as ALS (13c, 56a, 517, 524, 564, 494).

Medical studies and doctors treating chronic conditions like Fibromyalgia have found that sup-
plements which cause a decrease in glutamate or protect against its effects have a positive effect on
Fibromyalgia and other chronic neurologic conditions. Some that have been found to be effective
include CoQ10 (444), ginkgo biloba and pycnogenol (494a), NAC (54, 494a), Vit B6, methyl cobal-
amine (B12), L-carnitine, choline, ginseng, vitamins C and E, nicotine, and omega 3 fatty acids (fish
and flaxseed oil) (417, 495e). A study demonstrated protective effects of methylcobalamin, a vitamin
B12 analog, against glutamate-induced neurotoxicity (503), and similarly for iron in those who are
iron deficient.

In a study of the brains of persons dying of ALS, spherical and crescent-shaped introneuronal
inclusions (SCI) were distributed in association with each other among the parahippocampal gyrus,
dentate gyrus of the hippocampus and amygdala, but not any non-motor-associated brain regions
(522). The occurrence of SCI in both the second and third layers of the parahippocampal gyrus and
amygdala was significantly correlated to the presence of dementia in ALS cases. Mercury has been
found to accumulate in these areas of the brain and to cause adverse behavioral effects in animal
studies and humans (66, 287, 305).
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Another neurological effect of mercury that occurs at very low levels is inhibition of nerve growth
factors, for which deficiencies result in nerve degeneration. Only a few micrograms of mercury
severely disturb cellular function and inhibits nerve growth (175, 147, 226, 255, 305, 149). Prenatal
or neonatal exposures have been found to have life long effects on nerve function and susceptibility
to toxic effects. Prenatal mercury vapor exposure that results in levels of only 4 parts per billion
in newborn rat brains was found to cause decreases in nerve growth factor and other effects (305).
This is a level that is common in the population with several amalgam fillings or other exposures
(600). There is also evidence that fetal or infant exposure causes delayed neurotoxicity evidenced
in serious effect at middle age (255). Insulin-like-growth factor I (IGF-I) are positively correlated
with growth hormone levels and have been found to be the best easily measured marker for levels
of growth hormone, but males have been found more responsive to this factor than women (497).
IGF-I controls the survival of spinal motor neurons affected in ALS during development as well as
later in life (497, 498). IGF-I and insulin levels have been found to be reduced in ALS patients
with evidence this is a factor in ALS (497, 498). Several clinical trials have found IGF-I treatment
is effective at reducing the damage and slowing the progression of ALS and Alzheimer’s with no
medically important adverse effects (498). It has also been found that in chronically ill patients
the levels of pituitary and thyroid hormones that control many bodily processes are low, and that
supplementing both thyrotropin-releasing hormone and growth control hormone is more effective at
increasing all of these hormone levels in the patient (499).

Extremely toxic anaerobic bacteria from root canals or cavitations formed at incompletely healed
tooth extraction sites have also been found to be common factors in Fibromyalgia and other chronic
neurological conditions such as Parkinson’s and ALS, with condensing osteitis which must be removed
with a surgical burr along with 1 mm of bone around it (35, 200, 437, 600). Cavitations have been
found in 80% of sites from wisdom tooth extractions tested and 50% of molar extraction sites tested
(35, 200, 437). The incidence is likely somewhat less in the general population. Medical studies
and doctors treating Fibromyalgia have found that supplements which cause a decrease in glutamate
or protect against its effects have a positive effect on Fibromyalgia and other chronic neurologic
conditions like ALS. Some that have been found to be effective include Vit B6, methyl cobalamine
(B12), L-carnitine, choline, ginseng, Ginkgo biloba, vitamins C and E, CoQ10, nicotine, and omega
3 fatty acids (fish and flaxseed oil) (417, 468).

Clinical tests of patients with ALS, MND, Parkinson’s, Alzheimer’s, Lupus (SLE), and rheumatoid
arthritis have found that the patients generally have elevated plasma cysteine to sulphate ratios, with
the average being 500% higher than controls (330, 331, 56, 84), and in general being poor sulphur
oxidizers. This means that these patients have blocked enzymatic processes for converting the basic
cellular fuel cysteine to sulfates and glutathione, and thus insufficient sulfates available to carry
out necessary bodily processes. Mercury has been shown to diminish and block sulphur oxidation
and thus reducing glutathione levels which is the part of this process involved in detoxifying and
excretion of toxics like mercury (33). Glutathione is produced through the sulphur oxidation side
of this process. Low levels of available glutathione have been shown to increase mercury retention
and increase toxic effects (111), while high levels of free cysteine have been demonstrated to make
toxicity due to inorganic mercury more severe (333, 194, 56, 33b). The deficiency in conjugation and
detoxification of sulfur based toxins in the liver results in toxic metabolites and progressive nerve
damage over time (331). Mercury has also been found to play a part in inducing intolerance and
neuronal problems through blockage of the P-450 enzymatic process (84, 33b). Patients with some
of these conditions have found that bathing in Epsom Salts (magnesium sulfate) offers temporary
relief for some of their symptoms by providing sulfates that avoid the blocked metabolic pathway.
A test that some doctors treating conditions like ALS usually prescribe to measure the cysteine to
sulfate ratio and other information useful in diagnosis and treatment is the Great Smokies Diagnostic
Labs comprehensive liver detox test (386). The test results come with some recommendations for
treatment. A hair test for toxic metals is also usually ordered to determine toxic exposures that



might be involved (386). A more definitive test such as MELISA for immune reactivity to toxics is
available by sending blood to a European lab (87). Other labs also have other useful tests such as
Immune Reactivity Biocompatability Tests (445), ELISA or organic acid panels or amino acid panels
(386). Treatment using IV glutathione, vitaminC, and minerals has been found to be very effective
in the stabilizing and amelioration of some of these chronic neurological conditions by neurologist
such as Perlmutter in Florida (469).

In one subtype of ALS, damaged, blocked, or faulty enzymatic superoxide dimustase (SOD) pro-
cesses appear to be a major factor in cell apoptosis involved in the condition (443, 495). Mercury is
known to damage or inhibit SOD activity (13, 33, 111).

1.4 Prevention and Treatment of ALS

Tick-borne encephalitis, such as Lyme Disease, has been found to cause ALS symptoms in a significant
portion of untreated acute cases (471). Lyme disease is widespread in the U.S. Large numbers of
patients diagnosed with ALS and other neurological conditions have been found to have treatable tick-
borne encephalitis, and many have recovered after treatment. Anyone diagnosed with degenerative
neurological symptoms should investigate the possibility of lyme disease or post-polio encephalitis.
Poliomyelitis also has a chronic state that resembles ALS (580).

Since elevated plasma cysteine has been reported in some ALS patients, sulfite and cysteine toxicity
may be involved in other cases of ALS. Patients with ALS with nonmutant-SOD should be tested
for sulfite toxicity, cysteine, glutamate and GSH levels, and whether they have low levels of GSH
metabolism enzymes. During the time when strict dietary and supplement measures normalized a
patient’s whole blood GSH, blood cysteine, and urine sulfite, the patient did not experience additional
physical decline (330b).

Total dental revision (TDR) which includes replacing amalgam fillings, extracting root canaled
teeth, and treating cavitations has been found to offer significant health improvements to many with
ALS and other autoimmune conditions (35, 200, 293, 437). Root canals and cavitations have been
found to harbor anaerobic bacteria which give off toxins of extreme toxicity which block enzymatic
processes at the cellular level causing degenerative processes according to the medical labs that do the
tests (437, 200, 35), similar to mercury’s effects but in some cases even more toxic. IGF-1 treatments
have also been found to alleviate some of the symptoms of ALS (424). Medical studies and doctors
treating Fibromyalgia have found that supplements which cause a decrease in glutamate or protect
against its effects have a positive effect on Fibromyalgia. Some that have been found to be effective
in treating metals related autoimmune conditions include Vit B6, CoenzymeQ10, methyl cobalamine
(B12), SAMe, L-carnitine, choline, ginseng, Ginkgo biloba, vitamins C and E, nicotine, and omega
3 fatty acids (fish and flaxseed oil) (417, 444, 468, 580).

One dentist with severe symptoms similar to ALS improved after treatment for mercury poisoning
(246), and others treated for mercury poisoning or using TDR have also recovered or significantly
improved (97, 229, 405, 406, 437, 468-470, 485, 35).The Edelson Clinic in Atlanta which treats ALS
patients reports similar experience (406), and the Perlmutter Clinic has also had some success with
treatment of ALS and other degenerative neurological conditions (469).

While there are many studies documenting effectiveness of chemical chelators like DMSA and
DMPS at reducing metals levels and alleviating adverse effects for most conditions, and many thou-
sands of clinical case results (600, 601); there is also some evidence from animal studies that these
chelators can result in higher levels of mercury in the motor neurons in the short term which might
be a problem for ALS patients (600). Thus other detox options might be preferable for ALS patients
until enough clinical evidence is available treating ALS patients with them with mercury toxicity.
Another chelator used for clogged arteries, EDTA, forms toxic compounds with mercury and can
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damage brain function (307). Use of EDTA may need to be restricted in those with high Hg lev-
els. N-acetyl cysteine (NAC) has been found to be effective at increasing cellular glutathione levels
and chelating mercury (54). Experienced doctors have also found additional zinc to be useful when
chelating mercury (222) as well as counteracting mercury’s oxidative damage (43). Zinc induces
metallothionein which protects against oxidative damage and increases protective enzyme activities
and glutathione which tend to inhibit lipid peroxidation and suppress mercury toxicity (430, 464).
Also lipoic acid, LA, has been found to dramatically increase excretion of inorganic mercury (over
12 fold), but to cause decreased excretion of organic mercury (572d) and copper. Lipoic acid has
a protective effect regarding lead or inorganic mercury toxicity through its antioxidant properties
(572), but should not be used with high copper until copper levels are reduced. LA and NAC (N-
acetyl cysteine) also increase glutathione levels and protect against superoxide radical/ peroxynitrite
damage, so thus have an additional neuroprotective effect (494ab, 521, 572¢, 54). Zinc is a mercury
and copper antagonist and can be used to lower copper levels and protect against mercury damage.
Lipoic acid has been found to have protective effects against cerebral ischemic-reperfusion, excitotoxic
amino acid (glutamate) brain injury, mitochondrial dysfunction, diabetic neuropathy (494).

Antioxidants such as carnosine (495a), Coenzyme Q10, Vitamins B & C & E & D, gingko biloba,
superoxide dismutase (SOD), N-acetyl-cysteine (NAC), Alpha Lipoic Acid, and pycnogenol have also
been found protective against degenerative neurological conditions (494, 495e, 444, 580). Other sup-
plements found to be protective against neuronal degenerative conditions include Acetyl-L-Carnitine,
EFAs (DHA/EPA), DHEA, CoQ10, magnesium, Vit Bl & B5, hydergine, and octacosanol (580).
Such supplements only offer limited protection and reductions in progression of ALS without other
measures that deal with underlying mechanisms of causality.

Other supplements that appear useful in conditions involving neurotoxicity or muscle function
degeneration include creatine (502, 580) and lithium (590). In the motor cortex of the ALS group
the N-acetylaspartate (NAA)/creatine (Cr (t)) metabolite ratio was lower than in our control group,
indicating NAA loss. Upon creatine supplementation we observed in the that creatine supplemen-
tation causes an increase in the diminished NAA levels in ALS motor cortex as well as an increase
of choline levels in both ALS and control motor cortices. This indicates an improvement in function
of the pathological ALS skeletal muscles related to changes of mitochondrial respiratory chain which
appears to affect motor neuron survival. In another study by the NAS, lithium carbonate at 150
mg twice daily significantly reduced the degeneration of ALS patients (590). A recent study demon-
strated that combined treatment with lithium and valproic acid elicits synergistic neuroprotective
effects against glutamate excitotoxicity in cultured brain neurons. Combined lithium and valproate
treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic
lateral sclerosis mouse model (590c). Methylcobalamin and SAMe have also been found to provide
some protection against neurotoxicity (580).

Two experimental treatment for ALS that has shown some effectiveness at reducing disease pro-
gression is recombinant human insulin-like growth factor and Orap (Pimozide) (580).
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