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conditions: the mercury connection

Alzheimer’s Disease and Other Autoimmune Degenerative Conditions: the Mercury Connection.

B. Windham (Editor)

1.1 Introduction and mercury exposure

There has been a huge increase in the incidence of degenerative neurological conditions in virtually
all Western countries over the last 2 decades (574, 580, 594). Alzheimer’s disease is the leading
cause of dementia in the elderly. The increase in Alzheimer’s and other dementia has been over
300%. The primary cause appears to be brain inflammation related to increased exposures to toxic
pollutants and bad dietary habits, as well as oxidative stress and depletion of neurotransmitters such
as acetylcholine (445, 574, 577, 580, 594, 598, 158, etc.). These appear to be factors in formation
of advanced glycation end products (AGEs) and senile plaques of beta-amyloid peptides, hyper-
phosphorylation of Tau, and neurofibrillary tangles-as seen in Alzheimer’s patients.

Mercury is known to be one of the most toxic substances commonly encountered and to be along
with lead the toxic substances adversely affecting the largest numbers of people (276). Mercury in
the presence of other metals in the oral environment undergoes galvanic action, causing movement
out of amalgam and into the oral mucosa and saliva (174, 183, 192, 436, 199). Mercury in solid
form is not stable due to its vapor pressure and oral galvanism of mixed metals so that it evaporates
continuously from amalgam fillings in the mouth, being transferred over a period of time to the host
(49, 79, 83, 85, 183, 199, 335, etc.). The daily total exposure of mercury from fillings is from 3 to
1000 micrograms per day, with the average exposure for those with several fillings being above 30
micrograms per day and the average uptake over 7 pg/day (49, 183, 199, 79, 83, 85, 335, 603, etc.),
with the majority of the rest excreted through the feces and often being over 30 ug/day (79, 335,
603). The average amount of mercury in the feces of a group with amalgams was over 10 times
that of controls (79, 603). A 2009 study found that inorganic mercury levels in people have been
increasing rapidly in recent years (543b). It used data from the U.S. Centers for Disease Control and
Prevention’s National Health Nutrition Examination Survey (NHANES) finding that while inorganic
mercury was detected in the blood of 2 percent of women aged 18 to 49 in the 1999-2000 NHANES
survey, that level rose to 30 percent of women by 2005-2006. Surveys in all states using hair tests have
found dangerous levels of mercury in an average of 22 % of the population, with over 30% in some
states like Florida and New York (543¢). A large U.S. Centers for Disease Control epidemiological
study, NHANES III, found that those with more amalgam fillings (more mercury exposure) have
significantly higher levels of chronic health conditions (543a).
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Amalgam fillings are the largest source of mercury' in most people with daily exposures docu-
mented to commonly be above government health guidelines (49, 79, 183, 199, 506, 594, 600, 607,
217). This is due to continuous vaporization of mercury from amalgam in the mouth, along with
galvanic currents from mixed metals in the mouth that deposit the mercury in the gums and oral
cavity (605). Due to the high daily mercury exposure and excretion into home and business sewers of
those with amalgam, dental amalgam is also the largest source of the high levels of mercury found in
all sewers and sewer sludge, and thus according to government studies a significant source of mercury
in rivers, lakes, bays, fish, and crops (603). People also get significant exposure from vaccinations,
fish, and dental office vapor (600).

When amalgam was placed into teeth of monkeys and rats, within one year mercury was found
to have accumulated in the brain, trigeminal ganglia, spinal ganglia, kidneys, liver, lungs, hormone
glands, and lymph glands (20). People also commonly get exposures to mercury and other toxic
metals such as lead, arsenic, nickel, and aluminum from food, water, and other sources (600, 601).
All of these are highly neurotoxic and are documented to cause neurological damage which can result
in chronic neurological conditions over time, as well as ADHD, mood, and behavioral disorders (594,
600, 601, 577).

Another major source of mercury exposure is vaccines such as flu vaccines which have large
amounts of mercury and aluminum, and have been linked to conditions like depression, Parkinson’s,
ALS, and dementia (445, 585, 598). It has been found that vaccines contain adjuvants like aluminum
plus mercury thimerosal which overstimulate the immune system and brain, causing high levels of
inflammation over long periods of time. There is evidence of a link between the aluminum hydroxide
in vaccines, and symptoms associated with Alzheimer’s, Parkinson’s, and ALS(585). It has been
found that those who get at least 5 flu shots have an increased risk of inflammatory conditions like
Alzheimer’s of at least 500%.

Mercury is one of the most toxic substances in existence and is known to bioaccumulate in the
body of people and animals that have chronic exposure (85, 600, 577, 594). Mercury exposure
is cumulative and comes primarily from 4 main sources: mercury amalgam dental fillings, food
(mainly fish), vaccinations, and occupational exposure. Whereas mercury exposure from fish is
primarily methyl mercury and mercury from vaccinations is thimerosal (ethyl mercury), mercury
from occupational exposure and dental fillings is primarily from elemental mercury vapor. However
bacteria, yeasts, and Vitamin B12 methylate inorganic mercury to methyl mercury in the mouth and
intestines (607, 505) and mercury inhibits functional methylation in the body, a necessary process
(504). Developmental and neurological conditions occur at lower levels of exposure from mercury
vapor than from inorganic mercury or methyl mercury (606). Mercury in amalgam fillings, because
of its low vapor pressure and galvanic action with other metals in the mouth, has been found to be
continuously vaporized and released into the body, and has been found to be the directly correlated
to the number of amalgam surfaces and the largest source of mercury in the majority of people (49,
183, 199, 209, 79, 99, 600), typically between 60 and 90% of the total. The level of daily exposure
of those with several amalgam fillings commonly exceeds the U.S. EPA health guideline for daily
mercury exposure of 0.1 ug/kg body weight/day, and the oral mercury level commonly exceeds the
mercury MRL of the U.S.ATSDR of 0.2 ug/ cubic meter of air (217, 600). When amalgam fillings
are replaced, levels of mercury in the blood, urine, and feces typically rise temporarily but decline
between 60 to 85% within 6 to 9 months (79, 600).

1.2 Cytotoxic, neurotoxic, and immunotoxic effects of mercury

Mercury vapor from amalgam readily crosses cell membranes and binds to the -SH (sulphydryl)
groups, resulting in inactivation of sulfur processes and blocking of enzyme functions such as cys-
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teine dioxygenase (CDO), sulfite oxidase, and gamma-glutamyltraspeptidase (GGC), producing sul-
fur metabolites with extreme toxicity that the body is unable to properly detoxify (33, 111, 114,
194, 258, 330, 331, 333), along with a deficiency in sulfates required for many body functions. Sulfur
is essential in enzymes, hormones, nerve tissue, and red blood cells. These exist in almost every
enzymatic process in the body. Blocked or inhibited sulfur oxidation at the cellular level has been
found in most with many of the chronic degenerative diseases, including Parkinson’s, Alzheimer’s,
ALS, MS, lupus, rheumatoid arthritis, MCS, etc (330, 331, 33, 35, 56, 194, 258), and appears to be
a major factor in these conditions. The deficiency in conjugation and detoxification of sulfur based
toxins in the liver results in toxic metabolites and progressive nerve damage over time (331). Mercury
also blocks the metabolic action of manganese and the entry of calcium ions into cytoplasm (333).
Oxidative stress and reactive oxygen species (ROS) have also been implicated as major factors in
neurological disorders including stroke, PD, Alzheimer’s, ALS, etc. (13, 56, 84, 169, 207h, 424, 442,
453, 462).

Programmed cell death (apoptosis) is documented to be a major factor in degenerative neurological
conditions like ALS, Alzheimer’s, MS, Parkinson’s, etc. Some of the factors documented to be
involved in apoptosis of neurons and immune cells include inducement of the inflamatory cytokine
Tumor Necrosis Factor-alpha (TNFa) (126), reactive oxygen species and oxidative stress (13, 43a,
56a, 296b, 495), reduced glutathione levels (56, 126a, 111a), liver enzyme effects and inhibition of
protein kinase C and cytochrome P450(43, 84, 260), nitric oxide and peroxynitrite toxicity (43a,
521, 524), excitotoxicity and lipid peroxidation (490, 496, 593), excess free cysteine levels (56d, 111a,
33, 330), excess glutamate toxicity (13b, 416, 445, 593, 598), excess dopamine toxicity (56d, 13a),
beta-amyloid generation (462), increased calcium influx toxicity (296b, 333, 416, 432, 462¢c, 507)
and DNA fragmentation (296, 42, 114, 142) and mitochondrial membrane dysfunction (56defg, 416,
444d).

The mechanisms by which mercury causes all of these conditions and neuronal apop-
tosis are documented in this review (often synergistically’ along with other toxic exposures).

Chronic neurological conditions such as Alzheimer’s appear to be primarily caused by chronic or
acute brain inflammation. The brain is very sensitive to inflammation. Disturbances in metabolic
networks: e.g., immuno-inflammatory processes, insulin-glucose homeostasis, adipokine synthesis
and secretion, intra-cellular signaling cascades, and mitochondrial respiration have been shown to
be major factors in chronic neurological conditions (592, 593, 598, 56g). Inflammatory chemicals
such as mercury, aluminum, and other toxic metals as well as other excitotoxins including MSG and
aspartame cause high levels of free radicals, lipid peroxidation, inflammatory cytokines, and oxidative
stress in the brain and cardiovascular systems (13, 585, 593, 595-598) Acetylcholine depletion has
been found to be a major factor in Alzheimer’s, and aluminum has been found to inhibit choline
transport and reduce neuronal choline acetyltransferase, which can lead to acetylcholine deficiency

(580).

The brain has elaborate protective mechanisms for regulating neurotransmitters such as glutamate,
which is the most abundant of all neurotransmitters. When these protective regulatory mechanisms
are damaged or affected, chronic neurological conditions such as Alzheimer’s can result (593). Mer-
cury and other toxic metals inhibit astrocyte function in the brain and CNS(119), causing increased
glutamate and calcium related neurotoxicity (119, 333, 416, 496, 593). Mercury and increased glu-
tamate activate free radical forming processes like xanthine oxidase which produce oxygen radicals
and oxidative neurological damage (142, 13). Nitric oxide related toxicty caused by peroxynitrite
formed by the reaction of NO with superoxide anions, which results in nitration of tyrosine residues
in neurofilaments and manganese Superoxide Dimustase (SOD) has been found to cause inhibition of
the mitochondrial respiratory chain, inhibition of the glutamate transporter, and glutamate-induced
neurotoxicity involved in ALS (524, 521, 56g).
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These inflammatory processes damage cell structures including DNA,| mitochondria, and cell mem-
branes. They also activate microglia cells in the brain, which control brain inflammation and immu-
nity. Once activated, the microglia secrete large amounts of neurotoxic substances such as glutamate,
an excitotoxin, which adds to inflammation and stimulates the area of the brain associated with anx-
iety (593, 598). Inflammation also disrupts brain neurotransmitters resulting in reduced levels of
serotonin, dopamine, and norepinephrine. Some of the main causes of such disturbances that have
been documented include vaccines, mercury, aluminum, other toxic metals, MSG, aspartame, etc.
(585, 593, 598, 600, etc.)

Programmed cell death (apoptosis) is documented to be a major factor in degenerative neuro-
logical conditions like ALS, Alzheimer’s, MS, Parkinson’s, etc. Some of the factors documented to
be involved in apoptosis of neurons and immune cells include mitochondrial membrane dysfunction
(56bc, 416). Mitochondrial DNA mutations or dysfunction is fairly common, found in at least 1 in
every 200 people (275), and toxicity effects affect this population more than those with less suscep-
tibility to mitochondrial dysfunction. Mercury depletes GSH and damages cellular mitochrondria,
which along with the increased lipid peroxidation in protein and DNA oxidation in the brain appears
to be major factors in conditions such as autism, Parkinson’s disease, Alzheimer’s, etc. (33, 56, 416,
442, 56g). Some prevention and repair of such damage to mitochondria has been documented using
pyroquinoline quinine (PQQ) (56g).

Reduced levels of magnesium and zinc are related to metabolic syndrome, insulin resistance, and
brain inflammation and are protective against these conditions (595, 43). Mercury and cadmium
inhibiting magnesium and zinc levels as well as inhibiting glucose transfer are other mechanisms by
which mercury and toxic metals are factors in metabolic syndrome and insulin resistance/diabetes
(43, 198, 338, 597).

TNFa (tumor necrosis factor-alpha) is a cytokine that controls a wide range of immune cell re-
sponse in mammals, including cell death (apoptosis) in neuronal and immune cells. This process is
involved in inflamatory and degenerative neurological conditions like ALS, MS, Parkinson’s, rheuma-
toid arthritis, etc. Cell signaling mechanisms like sphingolipids are part of the control mechansim for
the TNFa apoptosis mechanism (126a, 598). Gluthathione is an amino acid that is a normal cellular
mechanism for controlling apoptosis. When glutathione is depleted in the brain, reactive oxidative
species increased, and CNS and cell signaling mechinsisms are disrupted by toxic exposures such
as mercury, neuronal cell apoptosis results and neurological damage. Mercury has been shown to
induce TNFa and deplete glutathione, causing inflamatory effects and cellular apoptosis in neuronal
and immune cells (126b, 126c¢).

Mercury’s biochemical damage at the cellular level include DNA damage, inhibition of DNA and
RNA synthesis (42, 114, 142, 197, 296, 392); alteration of protein structure (33, 111, 114, 194, 252,
442); alteration of the transport of calcium (333, 43b, 254, 263, 416, 462, 507); inhibitation of glucose
transport (338, 254), and of enzyme function, protein transport, and other essential nutrient transport
(96, 198, 254, 263, 264, 33, 330, 331, 339, 347, 441, 442); induction of free radical formation (13a,
43b, 54, 405, 424), depletion of cellular gluthathione (necessary for detoxification processes) (111,
126, 424), inhibition of glutathione peroxidase enzyme (13a, 442), inhibits glutamate uptake (119,
416, 445), induces peroxynitrite and lipid peroxidation damage (521b), causes abnormal migration
of neurons in the cerebral cortex (149), immune system damage (34, 111, 194, 226, 252, 272, 316,
325, 355); and inducement of inflamatory cytokines (126, 181). Homocysteine has been found to
facilitate and increase mercury toxicity (19¢).

Na(+), K(+)-ATPase is a transmembrane protein that transports sodium and potassium ions
across cell membranes during an activity cycle that uses the energy released by ATP hydrolysis.
Mercury is documented to inhibit Na(+), K(+4)-ATPase function at very low levels of exposure
(288ab). Studies have found that in Alzheimer’s cases there was a reduction in serum magnesium
and RBC membrane Na(+)-K+ ATPase activity and an elevation in plasma serum digoxin (263).



The activity of all serum free-radical scavenging enzymes, concentration of glutathione, alpha to-
copherol, iron binding capacity, and ceruloplasmin decreased significantly in Alzheimer’s, while the
concentration of serum lipid peroxidation products and nitric oxide increased. The inhibition of
Na+-K+4 ATPase can contribute to increase in intracellular calcium and decrease in magnesium,
which can result in 1) defective neurotransmitter transport mechanism, 2) neuronal degeneration
and apoptosis, 3) mitochondrial dysfunction, 4) defective golgi body function and protein processing
dysfunction. It is documented in this paper that mercury is a cause of most of these conditions seen
in Alzheimer’s (13a, 111, 288, 442, 521b, 43, 56, 263, etc.)

Autoimmunity has also been found to be a factor in chronic degenerative autoimmune conditions
such as ALS, with genetic susceptibility® a major factor in who is affected. One genetic factor in
Hg induced autoimmunity is major histocompatibility complex (MHC) linked. Both immune cell
type Thl and Th2 cytokine responses are involved in autoimmunity (425c¢). One genetic difference
found in animals and humans is cellular retention differences for metals related to the ability to
excrete mercury (426). For example it has been found that individuals with genetic blood factor
type APOE-4 do not excrete mercury readily and bioaccumulate mercury, resulting in susceptibility
to chronic autoimmune conditions such as Alzheimer’s, Parkinson’s, etc. as early as age 40(437b),
whereas those with type APOE-2 readily excrete mercury and are less susceptible (437, 35). Those
with type APOE-3 are intermediate to the other 2 types. The incidence of autoimmune conditions
have increased to the extent this is now one of the leading causes of death among women (450). Also
when a condition has been initiated and exposure levels decline, autoimmune antibodies also decline
in animals or humans (233, 234c, 60, 369, 405)

Mercury has been found in autopsy studies to accumulate in the brain of those with chronic ex-
posures, and levels are directly proportional to the number of amalgam filling surfaces (85, 577).
Dozens of studies have documented that exposure to inorganic mercury causes memory loss and
memory problems (435, 600). Mercury has been found to cause memory loss by inactivating en-
zymes necessary for brain cell energy production and proper assembly of the protein tubulin into
microtubules (258). In a recent study, mercury at extremely low levels found commonly in those
with amalgam fillings was found to disrupt membrane structure and linear growth rates of neurites in
most nerve growth cones exposed, causing tubulin/micortubile structure to disintegrate. The study
also found that mercury also interferes with formation of tubulin producing neurofibrillary tangles
in the brain similar to those observed in Alzheimers patients (207, 462, 594), as well as causing
neuronal somata to fail to sprout. The process was found to result in low levels of zinc in the brain
(158, 43). There is evidence that certain redox active metal ions including copper and mercury are
important in exacerbating and perhaps facilitating Abeta-mediated oxidative damage and amyloid
deposits in Alzheimer’s disease (462, 488, 590, 594). Mercury has also been shown to induce cell
cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in
neuroblastoma cells resulting in amyloid plaques which is found in Alzheimer’s patients, and to also
cause the formation of the neurofibrilla tangles found in the Alzheimer’s patient brain (462, 258).
Mercury and the induced neurofibrillary tangles also appear to produce a functional zinc deficiency
in the of AD sufferers (242), as well as causing reduced lithium levels which is another factor in
such diseases. Lithium protects brain cells against excess glutamate induced excitability and calcium
influx (280, 416, 445, 56). These studies clearly implicate mercury as having the ability to cause
neurodegeneration in the brain and CNS, at levels of 20 ppb, which is lower than that of many
with several amalgam fillings or dental occupational exposure (462). Researchers at Geriatric and
Psychiatric Univ. Clinics in Basel, Switzerland concluded that inorganic mercury appears to be a
causative factor in Alzheimer’s and the Swizz Dental Assoc. recommended avoidance of amalgam
use in those with neurological disorders (462). Clinical experience has also found that DMSO has
some ability to repair tubulin damage (594).
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Clinical tests of patients with MND, ALS, Parkinson’s, Alzheimer’s, Lupus (SLE), rheumatoid
arthritis and autism have found that the patients generally have elevated plasma cysteine to sulphate
ratios, with the average being 500% higher than controls (330, 331, 56, 33d), and in general being
poor sulphur oxidizers. This means that these patients have insufficient sulfates available to carry out
necessary bodily processes and that cysteine levels build up in the brain and CNS to neurotoxic levels.
Mercury has been shown to diminish and block sulphur oxidation and thus reducing glutathione levels
which is the part of this process involved in detoxifying and excretion of toxics like mercury (33).
Glutathione is produced through the sulphur oxidation side of this process. Low levels of available
glutathione have been shown to increase mercury retention and increase toxic effects (111), while
high levels of free cysteine have been demonstrated to make toxicity due to inorganic mercury more
severe (333, 194, 56, 33d). Mercury has also been found to play a part in inducing intolerance and
neuronal problems through blockage of the P-450 enzymatic process (84, 33d).

Mercury also blocks the immune function of magnesium and zinc (198, 427, 43, 38), whose defi-
ciencies are known to cause significant neurological effects (461, 463, 443). The low Zn levels result in
deficient CuZnSuperoxide dismustase (CuZnSOD), which in turn leads to increased levels of super-
oxide due to toxic metal exposure (443). Mercury is known to damage or inhibit SOD activity (33,
111). Mercury induced lipid peroxidation has been found to be a major factor in mercury’s neurotox-
icity, along with leading to decreased levels of glutathione peroxidation and superoxide dismustase
(SOD) (13, 254, 489, 494-496).

Mercury inhibits sulfur ligands in M'T and in the case of intestinal cell membranes inactivates M'T
that normally bind cuprous ions (477), thus allowing buildup of copper to toxic levels in many and
malfunction of the Zn/Cu SOD function. Modern amalgams commonly used in the U.S. have higher
levels of copper than the traditional silver amalgams and result in much higher exposure levels to
mercury and copper (258). This is a factor in higher incidence of neurodegnerative condidtions like
Alzheimer’s. Exposure to mercury results in changes in metalloprotein compounds that have genetic
effects, having both structural and catalytic effects on gene expression (114, 241, 296, 442, 464,
477, 495). Some of the processes affected by such MT control of genes include cellular respiration,
metabolism, enzymatic processes, metal-specific homeostasis, and adrenal stress response systems.
Significant physiological changes occur when metal ion concentrations exceed threshold levels.

Copper is an essential trace metal which plays a fundamental role in the biochemistry of the
nervous system (489, 495, 464). Several chronic neurological conditions involving copper metabolic
disorders are well documented like Wilson’s Disease and Menkes Disease. Mutations in the cop-
per/zinc enzyme superoxide dismustase (SOD) have been shown to be a major factor in the motor
neuron degeneration in conditions like familial ALS and similar effects on Cu/Zn SOD to be a factor
in other conditions such as autism, Alzheimer’s, Parkinson’s, and non-familial ALS (489, 495, 464,
111). This condition can result in zinc deficient SOD and oxidative damage involving nitric oxide,
peroxynitrite, and lipid peroxidation (495, 496, 489), which have been found to affect glutamate
mediated excitability and apoptosis of nerve cells and effects on mitochondria (416, 445, 495, 496,
119) These effects can be reduced by zinc supplementation (464, 495, 517), as well as supplementa-
tion with antioxidants and nitric oxide-suppressing agents and peroxynitrite scavengers such as Vit
C, Vit E, lipoic acid, Coenzyme Q10, carnosine, gingko biloba, N-acetylcysteine, turmeric, etc.(444,
464, 494, 495, 469, 497). Some of the antioxidants were also found to have protective effects through
increasing catalase and SOD action, while reducing lipid peroxidations (494a). Curcumin as an an-
tioxidant, anti-inflammatory and lipophilic action improves the cognitive functions in patients with
AD (497). A growing body of evidence indicates that oxidative stress, free radicals, beta amyloid,
cerebral deregulation caused by bio-metal toxicity and abnormal inflammatory reactions contribute
to the key event in Alzheimer’s disease pathology. Due to various effects of curcumin, such as de-
creased Beta-amyloid plaques, delayed degradation of neurons, metal-chelation, anti-inflammatory,
antioxidant and decreased microglia formation, the overall memory in patients with AD has im-
proved. Ceruloplasmin in plasma can be similarly affected by copper metabolism disfunction, like



SOD function, and is often a factor in neurodegeneration (489).

Studies showed that metals can induce A-beta aggregation and toxicity and are concentrated
in Alzheimer’s brain. There is accumulating evidence that interactions between beta-amyloid and
copper, iron, and zinc are associated with the pathophysiology of Alzheimer’s disease (AD) (590). A
significant dyshomeostasis of copper, iron, and zinc has been detected, and the mismanagement of
these metals induces beta-amyloid precipitation and neurotoxicity. Chelating agents offer a potential
therapeutic solution to the neurotoxicity induced by copper and iron dyshomeostasis. Currently,
the copper and zinc chelating agents clioquinol and desferroxamine represent a potential therapeutic
route that may not only inhibit beta-amyloid neurotoxicity, but may also reverse the accumulation
of neocortical beta-amyloid. There is also evidence that melatonin and curcumin may have beneficial
effects on reducing metal toxicity (591, 497). Turmeric/curcumin has been found to reduce some of
the toxic and inflammatory effects of toxic metals (497, 498).

Low levels of mercury and toxic metals have been found to inhibit dihydroteridine reductase, which
affects the neural system function by inhibiting transmitters through its effect on phenylalanine, ty-
rosine and tryptophan transport into neurons (122, 257, 289, 342, 372). This was found to cause
severe impaired amine synthesis and hypokinesis. Tetrahydrobiopterin, which is essential in produc-
tion of neurotransmitters, is significantly decreased in patients with Alzheimer’s’s, Parkinson’s, MS,
and autism. Such patients have abnormal inhibition of neurotransmitter production.

Some studies have also found persons with chronic exposure to electromagnetic fields (EMF) to
have higher levels of mercury exposure and excretion (38). Magnetic fields are known to induce
current in metals and would increase the effects of galvanism. Occupational exposure to higher levels
of EMF have also been found in many studies to result in much higher risk of chronic degenerative
neurological conditions such as ALS (39) and Alzheimer’s Disease (40) Since EMF causes increased
mercury exposure in those with amalgam, and mercury is also known to cause these conditions,
again it is not clear the relative importance of the factors since the studies were not controlled for
mercury levels or number of amalgam fillings. Studies have also found a correlation between high
levels of aluminum exposure and dementia such as Alzheimer’s (470, 580), and concluded based on
extensive literature that the neurotoxic effects of aluminium are beyond any doubt, and aluminium
as a factor in some AD cannot be discarded (470b). Tt is well documented that neurological effects of
toxics are synergistic'. Flu shots have mercury and aluminum which both are known to accumulate
in the brain over time. A study of people who received flu shots regularly found that if an individual
had five consecutive flu shots between 1970 and 1980 (the years studied) his/her chances of getting
Alzheimer’s Disease is ten times higher than if they had one or no shots (475).

Many studies of patients with major neurological or degenerative diseases have found evidence
amalgam fillings may play a major role in development of conditions such as such as Alzheimer’s (66,
67, 158, 166, 204, 207, 221, 238, 242, 244, 257, 300, 303, 369, 444d, 462, 35, 38d) and significantly
improve after dental amalgam replacement and dental infection cleanup. Low levels of toxic metals
have been found to inhibit dihydroteridine reductase, which affects the neural system function by
inhibiting brain transmitters through its effect on phenylalanine, tyrosine and tryptophan transport
into neurons (122, 257, 289, 372). This was found to cause severe impaired amine synthesis and hy-
pokinesis. Tetrahydro-biopterin, which is essential in production of neurotransmitters, is significantly
decreased in patients with Alzheimer’s’s, Parkinson’s, and MS. Such patients have abnormal inhi-
bition of neurotransmitter production.(supplements which inhibit breach of the blood brain barrier
such as bioflavonoids have been found to slow such neurological damage).

Also mercury binds with cell membranes interfering with sodium and potassium enzyme functions,
causing excess membrane permeability, especially in terms of the blood-brain barrier (155, 207, 311).
Less than 1ppm mercury in the blood stream can impair the blood- brain barrier. Mercury was
also found to accumulate in the mitochondria and interfere with their vital functions, and to inhibit
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cytochrome C enzymes which affect energy supply to the brain (43, 84, 232, 35). Persons with
the APO-E4 gene form of apolipoprotein E which transports cholesterol in the blood, are especially
susceptible to this damage (207, 221, 346, 437, 580), while those with APO-E2 which has extra
cysteine and is a better mercury scavenger have less damage. The majority have an intermediate form
APO-E3. This appears to be a factor in susceptibility® to Alzheimer’s disease, Parkinson’s disease and
multiple sclerosis (291). Ones susceptibility can be estimated by testing for this condition. Repeated
exposure to pesticides has also been found to increase Alzheimer’s Disease risk (586).

A major systematic review of all medical studies found on the connection of mercury exposure
and Alzheimer’s Disease was recently carried out by MDs and PhDs. (435) Studies were screened
according to a pre-defined protocol. The author’s noted that mercury is one of the most toxic
substances known to humans and in addition to being widespread in the environment has also been
used extensively in vaccinations and dental amalgam. Studies were screened according to a pre-
defined protocol. Most of the studies testing memory in individuals exposed to inorganic mercury
(IM), found significant memory deficits. Some autopsy studies found increased mercury levels in
brain tissues of AD patients. “In vitro models showed that IM reproduces all pathological changes
seen in AD, and in animal models IM produced changes that are similar to those seen in AD. Its high
affinity for selenium and selenoproteins suggests that IM may promote neurodegenerative disorders
via disruption of redox regulation.” IM appears to play a role as a co-factor in the development of
AD. It appears to also increase the pathological influence of other metals through adverse effects on
the blood brain barrier. Our mechanistic model describes potential causal pathways. It concludes:
“As the single most effective public health primary preventive measure, industrial, and medical usage
of mercury should be eliminated as quickly as possible.”

“Earlier research on the biochemical abnormalities of the Alzheimer’s Diseased (AD) brain showed
that mercury, and only mercury, at very low levels induced the same biochemical abnormalities when
added to normal human brain homogenates or in the brains of rats exposed to mercury vapor.” (438)
“Since the brain is more vulnerable to oxidative stress than any other organ, it is not surprising that
mercury, which promotes oxidative stress, is an important risk factor for brain disorders.”

1.3 Insulin resistance as a factor in Alzheimer’s

Higher insulin and glucose levels in the blood and deficiency of glucose in brain cells that need it has
been found to lead to neurological problems such as Alzheimer’s (580, 581). Those with either type
I or type II diabetes have been found to be more likely to have other chronic conditions including
heart disease, strokes, kidney disease, Alzheimer’s, eye conditions and blindness (580, 581). Diabetes
also impacts memory by increasing the risk blood vessels will become obstructed, restricting blood
flow to the brain. High blood glucose levels also impact cognition through formation of sugar-related
toxins called advanced glycation end products (AGEs). AGEs have been found to be a factor in
aging, diabetes, and Alzheimer’s. Glycotoxins are formed when sugars interact with proteins and
lipids, damaging the structure of proteins and membranes, rendering them less able to carry out
their many vital processes. (581). Studies have shown that AGEs are a key factor in cross-linking
of harmful beta-amyloid plaques in the brain that are implicated in Alzheimer’s. As previously
documented mercury and aluminum exposure increase insulin resistance and amalgam replacement
and detoxification reduce insulin resistance.

Inflammation induced by vaccine adjuvants like aluminum and mercury or by excitotoxins like
MSG has been found to play a significant role in insulin resistance (type-2 diabetes) and in high
levels of LDL cholesterol (597, 598, 585, 593). Reduced levels of magnesium and zinc are related
to metabolic syndrome, insulin resistance, and brain inflammation, and these are protective against
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these conditions (599, 43). Mercury and cadmium by inhibiting magnesium and zinc levels as well
as inhibiting glucose transfer are other mechanisms by which mercury and toxic metals are factors in
metabolic syndrome and insulin resistance/diabetes (43, 198, 338, 597). Mercury inhibits production
of insulin and is a factor in diabetes and hypoglycemia, with significant reductions in insulin need
after replacement of amalgam filings and normalizing of blood sugar (35, 502). Iron overload has
also been found to be a cause of insulin resistance/type 2 diabetes (582).

1.4 Treatment of Alzheimer’s

In some cases replacement of amalgam fillings or toxic metals chelation has been found to result in
cure or significant improvement in Alzheimer’s patients (204, 35, 38¢c). Alzheimer’s patients com-
monly are found to be deficient in omega 3 fatty acids, vit C, B12, SAMe, vit K, etc. and clinical
experience has found supplementing these to be beneficial in some cases (580). A study demonstrated
protective effects of methylcobalamin, a vitamin B12 analog, against glutamate- induced neurotoxic-
ity (503), and similarly for iron in those who are iron deficient . Supplements with clinical experience
indicating benefit in many Alzheimer’s/dementia cases include pantothenic acid (B5), vit B12, vit
B1, vit B6, Vit E, Ginkgo Biloba, Vit C, Acetyl-L-Carnatine, CoQ10, EFAs (DHA /EPA), N-Acetyl-
Cysteine (NAC), SAMe, folate, inositol, melatonin, carnosine (580). Two treatments shown to be
significantly beneficial in the majority of Alzheimer’s patients using the supplement are Huperzine
A and Kami-Umtan-To (KUT) (580). Lithium supplements (lithium carbonate and lithium oratate)
have been found to be effective in protecting neurons and brain function from oxidative and excito-
toxic effects. A recent study demonstrated that combined treatment with lithium and valproic acid
elicits synergistic neuroprotective effects against glutamate excitotoxicity in cultured brain neurons

(280).
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