Polos Olímpicos de Treinamento

Curso de Álgebra - Nível 3

Prof. Cícero Thiago / Prof. Marcelo Mendes

Sequências II

1. Recorrências lineares

Uma recorrência linear de ordem k com coeficientes constantes em uma variável é

$$f_n = c_{n-1}f_{n-1} + c_{n-2}f_{n-2} + \ldots + c_{n-k}f_{n-k} + g(n),$$

em que $c_1, c_2, c_3, \ldots, c_{n-k}$ são constantes e g(n) é uma função de n. A recorrência linear é chamada homogênea se $g(n) \equiv 0$ e, não homogênea, caso contrário.

2. Recorrências lineares de ordem 2 homogêneas

Teorema 1. Seja $(f_n)_{n\geq 1}$ uma sequência de números reais tal que, para todo $k\geq 1$ inteiro, tenhamos

$$f_{k+2} + rf_{k+1} + sf_k = 0,$$

onde r, s são constantes reais dadas, sendo $r \neq 0$. Se a equação $x^2 + rx + s = 0$, chamada de equação característica, tiver raízes reais α e β , então existem constantes reais A e B,

- determinadas pelos valores de f_1 e f_2 , tais que: (a) Se $\alpha \neq \beta$, então $f_n = A\alpha^{n-1} + B\beta^{n-1}$ para todo $n \geq 1$. (b) Se $\alpha = \beta$, então $f_n = A\alpha^{n-1} + B(n-1)\alpha^{n-1}$ para todo $n \geq 1$.

Problema 1. Determine o termo geral da sequência de Fibonacci definida por F_n $F_{n-1} + F_{n-2}, n \ge 2, F_1 = F_2 = 1.$

Solução.

A equação característica associada à equação em questão $(F_n = F_{n-1} + F_{n-2})$ é

$$x^2 - x - 1 = 0$$
,

cujas raízes são $\alpha=\frac{1+\sqrt{5}}{2}$ e $\beta=\frac{1-\sqrt{5}}{2}$. As condições $F_1=F_2=1$ implicam no sistema:

$$\left\{ \begin{array}{cccc} A & + & B & = & 1 \\ \left(\frac{1+\sqrt{5}}{2}\right)\cdot A & + & \left(\frac{1-\sqrt{5}}{2}\right)\cdot B & = & 1, \end{array} \right.$$

POT 2012 - Álgebra - Nível 3 - Aula 17 - Prof. Cícero Thiago/ Prof. Marcelo Mendes

cuja solução é $A=\frac{1+\sqrt{5}}{2\sqrt{5}}$ e $B=-\frac{1-\sqrt{5}}{2\sqrt{5}}$. Obtemos, portanto, a conhecida fórmula para F_n :

 $F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$, para $n \ge 1$.

Problema 2. Seja $(a_n)_{n\geq 1}$ a sequência dada por $a_1=1, a_2=4$ e, para todo inteiro positivo $k, a_{k+2}=5a_{k+1}-6a_k$. Calcule a_n em função de n.

Problema 3. (Romênia TST) Considere a sequência $(a_n)_{n\geq 0}$ definida por $a_0=a_1=1$ e $a_{n+1}=14a_n-a_{n-1}, n\geq 1$. Prove que para todo $n\geq 0, 2a_n-1$ é um quadrado perfeito.

Problema 4. (Ibero) Seja (a_n) e (b_n) duas sequências de números inteiros que verificam as seguinte condições:

- (i) $a_0 = 0$; $b_0 = 8$
- (ii) $a_{n+2} = 2a_{n+1} a_n + 2$; $b_{n+2} = 2b_{n+1} b_n$
- (iii) $a_n^2 + b_n^2$ é um quadrado perfeito para todo n.

Determinar pelo menos dois valores do par (a_{1992}, b_{1992}) .

3. Recorrências não - lineares

Problema 5. A sequência $(x_n)_{n\geq 1}$ é tal que $x_1=0$ e

$$x_{n+1} = 5x_n + \sqrt{24x_n^2 + 1}$$

para todo $n \ge 1$. Prove que todos os termos da sequência são inteiros positivos.

Solução. É fácil ver que a sequência é crescente e todos os termos são positivos. Temos também que a recorrência original é equivalente a

$$x_{n+1}^2 - 10x_n x_{n+1} + x_n^2 - 1 = 0.$$

Substituindo n por n-1 temos

$$x_n^2 - 10x_n x_{n-1} + x_{n-1}^2 - 1 = 0.$$

Então, para $n \ge 2$, os números x_{n+1} e x_{n-1} são raízes positivas e distintas da equação

$$x^2 - 10xx_n + x_n^2 - 1 = 0.$$

Usando as relações de Girard temos que

$$x_{n+1} + x_{n-1} = 10x_n \Leftrightarrow$$

$$x_{n+1} = 10x_n - x_{n-1}, \ \forall n \ge 2.$$

Como $x_1 = 1$ e $x_2 = 10$, segue indutivamente que os termos da sequência são inteiros e positivos.

${\bf POT~2012}$ - Álgebra - Nível 3 - Aula 17 - Prof. Cícero Thiago/ Prof. Marcelo Mendes

Problema 6. Considere a sequência $(a_n)_{n\geq 1}$ tal que $a_1=a_2=1,\ a_3=199$ e

$$a_{n+1} = \frac{1989 + a_n a_{n-1}}{a_{n-2}}, \ \forall n \ge 3.$$

Prove que todos os termos da sequência são inteiros e positivos.

Problema 7. (Torneio das cidades) A sequência x_n está definida pelas seguintes condições:

$$x_1 = 19, \ x_2 = 97, \ x_{n+2} = x_n - \frac{1}{x_{n+1}}.$$

Demonstrar que existe um termo desta sequência que é igual a 0. Determinar o índice desse termo.

Problema 8. (China) Seja (a_n) uma sequência tal que $a_1 = 1$, $a_2 = 2$ e $\frac{a_{n+2}}{a_n} = \frac{a_{n+1}^2 + 1}{a_n^2 + 1}$ para todo $n \ge 1$.

- (a) Determine a_n em função de n.
- (b) Prove que $63 < a_{2008} < 78$.

Bibliografia

- 1. Lecture notes on mathematical olympiad courses For senior section vol.2 ${\rm Xu}$ Jiagu
- 2. Mathematical Olympiad Treasures Titu Andreescu e Bogdan Enescu
- 3. Tópicos de matemática elementar vol.4 Antonio Caminha Muniz Neto
- 4. Introdução à análise combinatória José Plínio O. Santos, Margarida P. Mello e Idani T. C. Murari