Polos Olímpicos de Treinamento

Curso de Teoria dos Números - Nível 2

Prof. Samuel Feitosa

Equações de Pell

Uma Equação Famosa

Vejamos um problema que servirá de motivação ao nosso estudo.

Exemplo 1. Sejam F_n e L_n as seqüências de Fibonacci e Lucas, respectivamente, definidas por

$$F_1 = 1$$
, $F_2 = 1$ e $F_{n+1} = F_n + F_{n-1}$, $n \ge 2$, $L_1 = 1$, $L_2 = 3$ e $L_{n+1} = L_n + L_{n-1}$, $n \ge 2$.

Mostre que a equação $5x^2 - y^2 = 4$ admite uma solução (x, y) em inteiros positivos se, e somente se, $(x, y) = (F_{2n-1}, L_{2n-1})$ para algum natural n.

Note que (1,1) é a única solução com $y \le 2$. Podemos supor, portanto, que $y \ge 3$. Sendo α , β as duas raízes da equação $x^2 - x - 1 = 0$, é conhecido que

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 e $L_n = \alpha^n + \beta^n$.

É trivial verificar que os pares (F_{2n-1}, L_{2n-1}) satisfazem nossa equação. A parte difícil é mostrar que essas são as únicas soluções. Seja

$$S = \{ (F_{2n-1}, L_{2n-1}), n \ge 1 \}.$$

Por absurdo, suponha que exista uma solução $(x,y) \notin S$, e tome aquela que minimiza o valor de x. Como x e y têm a mesma paridade, as frações (3x-y)/2 e (3y-5x)/2 são inteiros positivos, pois

$$x^2 > -1$$
 \Rightarrow $9x^2 > 5x^2 - 4$ \Rightarrow $9x^2 > y^2$ \Rightarrow $3x > y$
e
 $y^2 > 5$ \Rightarrow $9y^2 > 5y^2 + 20$ \Rightarrow $9y^2 > 25x^2$ \Rightarrow $3y > 5x$.

Afirmamos que ((3x-y)/2,(3y-5x)/2) é uma solução da equação que não está em S. De fato,

$$5\left(\frac{3x-y}{2}\right)^2 - \left(\frac{3y-5x}{2}\right)^2 = \frac{20x^2 - 4y^2}{4} = 4,$$

e, se $((3x-y)/2,(3y-5x)/2) \in S$, existiria n para o qual

$$\frac{3x - y}{2} = F_{2n-1} \quad \text{e} \quad \frac{3y - 5x}{2} = L_{2n-1}$$

$$\iff \qquad x = F_{2n+1} \quad \text{e} \qquad y = L_{2n+1},$$

o que contraria o fato de (x, y) não estar em S. Para terminar, note que (3x - y)/2 < x, ou seja, obtemos uma solução cuja primeira coordenada é menor que x. Pelo método da Descida de Fermat, concluímos que todas as soluções estão em S.

Exemplo 2. (Vietnã 1999) A seqüência a_n é definida por $a_1 = 1$, $a_2 = 2$ e $a_{n+2} = 3a_{n+1} - a_n$, $n \ge 1$. A seqüência b_n é definida por $b_1 = 1$, $b_2 = 4$ e $b_{n+2} = 3b_{n+1} - b_n$, $n \ge 1$. Mostre que os inteiros positivos (a,b) satisfazem $5a^2 - b^2 = 4$ se, e somente se, $\operatorname{mdc}(a_n,b_n) = \operatorname{mdc}(a,b)$.

Veja que encontramos uma família infinita de soluções para o problema anterior. Curiosamente, essa família satisfaz uma recorrência linear bem simples. Note ainda que $\sqrt{5}$ apareceu na fórmula que encontramos para F_{2n+1} e L_{2n+1} . Será que tudo isso foi coincidência? Nosso próximo objetivo será estudar mais detalhadamente equações como a do problema anterior.

A equação $x^2-dy^2=N$, onde d é natural e N é inteiro, é chamada equação de Pell. Jonh Pell contribuiu muito pouco para a análise desta equação. Ela recebeu seu nome apenas por um engano de Euler. Lagrange foi o primeiro a provar que, se d não é um quadrado perfeito, então $x^2-dy^2=1$ tem infinitas soluções. Estamos interessados em descrever todas as possíveis soluções desta equação, caso existam, e tentar obter alguns critérios para dizer quando ela não tem solução. Trataremos apenas do caso em que d não é um quadrado perfeito. O outro caso é deixado como exercício para o leitor.

Observação 3. (Para professores) Caso os alunos não estejam preparados para o formalismo nas próximas demonstrações, o professor poderá ater-se apenas aos problemas. Bastaria o aluno entender como se caracterizam as soluções de uma equação de Pell. Após alguma amadurecimento, ficaria mais fácil estudar as provas e entender porque as soluções só podem ser daquela forma.

A próxima proposição é um conhecido exercício de princípio da casa dos pombos.

Proposição 4. Se ξ é um número irracional, existem infinitos números racionais x/y, com mdc(x, y) = 1, tais que

$$\left|\xi - \frac{x}{y}\right| < \frac{1}{y^2} \cdot$$

Demonstração. Considere a partição

$$[0,1) = \left[0, \frac{1}{n}\right) \cup \left[\frac{1}{n}, \frac{2}{n}\right) \cup \dots \cup \left[\frac{n-1}{n}, 1\right).$$

Pelo princípio da casa dos pombos, dois dentre os números $0, \{\xi\}, \{2\xi\}, \ldots, \{n\xi\}$ estão em um mesmo intervalo da partição, digamos

$$\{k\xi\}, \ \{j\xi\} \in \left[\frac{i}{n}, \ \frac{i+1}{n}\right), \quad 0 \le k < j \le n \ \text{e} \ 0 \le i < n.$$

Então

$$|\{j\xi\} - \{k\xi\}| < \frac{1}{n}$$

$$|(j-k)\xi - (\lfloor j\xi \rfloor - \lfloor k\xi \rfloor)| < \frac{1}{n}$$

$$\left|\xi - \frac{x'}{y'}\right| < \frac{1}{ny'},$$

onde $x' = \lfloor j\xi \rfloor - \lfloor k\xi \rfloor$ e y' = j - k. Seja d = mdc(x', y'), com x' = dx e y' = dy, mdc(x, y) = 1. Temos

$$\left| \xi - \frac{x}{y} \right| = \left| \xi - \frac{x'}{y'} \right| < \frac{1}{ny'} < \frac{1}{y'^2} < \frac{1}{y^2}$$

Para obter infinitas soluções, tome $m > 1/|\xi - x/y| \neq 0$. Com o mesmo argumento acima, particionando agora o intervalo [0,1) em m intervalos de mesmo tamanho, obtemos um par de inteiros (x_1,y_1) primos entre si, $0 < y_1 < m$, tais que

$$\left| \xi - \frac{x_1}{y_1} \right| < \frac{1}{my_1} < \left| \xi - \frac{x}{y} \right|$$

e portanto x_1/y_1 é uma aproximação racional de ξ melhor do que x/y.

Dizemos que um inteiro n é livre de quadrados se não existe nenhum natural k > 1 tal que $k^2|n$.

Proposição 5. Seja d um inteiro positivo livre de quadrados. Existe uma constante M tal que a designaldade

$$\left| x^2 - dy^2 \right| < M$$

tem infinitas soluções inteiras positivas (x, y).

Demonstração. É claro que, se d é livre de quadrados, então \sqrt{d} é irracional. Pela proposição anterior, existem infinitos pares de inteiros (x,y), com y>0 e $\mathrm{mdc}(x,y)=1$, tais que $|x-y\sqrt{d}|<1/y$. Aplicando a desigualdade triangular, temos

$$\left| x + y\sqrt{d} \right| \le \left| x - y\sqrt{d} \right| + 2y\sqrt{d} < \frac{1}{y} + 2y\sqrt{d}.$$

Multiplicando as duas desigualdades encontradas, obtemos

$$|x^2 - dy^2| < \frac{1}{y} \left(\frac{1}{y} + 2y\sqrt{d} \right) \le 2\sqrt{d} + 1,$$

o que conclui a demonstração.

Se (x, y) é solução da equação de Pell, é claro que $(\pm x, \pm y)$ também é. Suporemos, a partir daqui, que x, y > 0.

Teorema 6. Se d é um inteiro positivo livre de quadrados, então a equação $x^2 - dy^2 = 1$ tem infinitas soluções inteiras. Ademais, existe uma solução (x_1, y_1) , chamada de solução fundamental, tal que toda solução é da forma (x_n, y_n) , $n \ge 1$, onde $x_n + y_n \sqrt{d} = (x_1 + y_1 \sqrt{d})^n$.

Demonstração. Vamos mostrar a existência de uma solução. Pela proposição anterior, existem infinitos pares de inteiros (x,y) tais que $|x^2-dy^2| < M$. Existe, portanto, um inteiro $m, 1 \le m \le M$, tal que a equação $|x^2-dy^2| = m$ tem infinitas soluções. Módulo m, cada solução está no conjunto finito

$$\mathbb{Z}_m \times \mathbb{Z}_m = \left\{ \overline{0}, \overline{1}, \dots, \overline{m-1} \right\} \times \left\{ \overline{0}, \overline{1}, \dots, \overline{m-1} \right\},$$

e daí, com um argumento análogo ao anterior, existe um par $(\overline{a}, \overline{b}) \in \mathbb{Z}_m \times \mathbb{Z}_m$ tal que uma quantidade infinita de soluções (x, y) satisfaz $(\overline{x}, \overline{y}) = (\overline{a}, \overline{b})$. Em particular, existem soluções distintas (x_1, y_1) e (x_2, y_2) tais que $(\overline{x}_1, \overline{y}_1) = (\overline{x}_2, \overline{y}_2)$. Temos

$$\frac{x_1 + y_1\sqrt{d}}{x_2 + y_2\sqrt{d}} = \frac{\left(x_1 + y_1\sqrt{d}\right)\left(x_2 - y_2\sqrt{d}\right)}{m}$$

$$= \frac{\left(x_1x_2 - dy_1y_2\right) + \left(x_2y_1 - x_1y_2\right)\sqrt{d}}{m}$$

$$= u + v\sqrt{d},$$

onde u, v são inteiros, pois

$$x_1x_2 - dy_1y_2 \equiv x_1^2 - dy_1^2 \equiv 0 \pmod{m}$$

 $x_2y_1 - x_1y_2 \equiv x_1y_1 - x_1y_1 \equiv 0 \pmod{m}$.

Ademais.

$$u^{2} - dv^{2} = \left(u + v\sqrt{d}\right) \cdot \left(u - v\sqrt{d}\right)$$

$$= \frac{x_{1} + y_{1}\sqrt{d}}{x_{2} + y_{2}\sqrt{d}} \cdot \frac{x_{1} - y_{1}\sqrt{d}}{x_{2} - y_{2}\sqrt{d}}$$

$$= \frac{x_{1}^{2} - dy_{1}^{2}}{x_{2}^{2} - dy_{2}^{2}}$$

$$= 1.$$

mostrando a existência de solução. Vejamos agora como são as soluções.

Diremos que uma solução (x_1, y_1) é maior que uma solução (x_2, y_2) se $x_1 + y_1\sqrt{d} > x_2 + y_2\sqrt{d}$. Seja (x_1, y_1) a menor solução, com $x_1, y_1 > 0$. Chamaremos esta solução de fundamental. Dada outra solução (x, y), vamos mostrar que existe n para o qual $x + y\sqrt{d} = (x_1 + y_1\sqrt{d})^n$. De fato, se esse não é o caso, para algum n valem as seguintes designaldades

$$\left(x_1 + y_1\sqrt{d}\right)^n < x + y\sqrt{d} < \left(x_1 + y_1\sqrt{d}\right)^{n+1},$$

e daí

$$1 < \left(x + y\sqrt{d}\right) \left(x_1 + y_1\sqrt{d}\right)^{-n} < x_1 + y_1\sqrt{d}$$

$$1 < \left(x + y\sqrt{d}\right) \left(x_1 - y_1\sqrt{d}\right)^n < x_1 + y_1\sqrt{d}$$

$$1 < A + B\sqrt{d} < x_1 + y_1\sqrt{d},$$

onde (A, B) é uma solução formada por inteiros positivos (prove!). Isso contraria a minimilidade do par (x_1, y_1) . Assim, toda solução (x, y) deve satisfazer $x + y\sqrt{d} = (x_1 + y_1\sqrt{d})^n$, para algum $n \ge 1$, e uma fácil verificação mostra que esses pares são de fato soluções da equação.

Exemplo 7. Encontre todos os triângulos cujos lados são inteiros consecutivos e cuja área é inteira.

Sejam $a=n-1,\,b=n,\,c=n+1$ os lados do triângulo. Pela fórmula de Herão, a área do triângulo é

$$A = \frac{1}{4}\sqrt{(a+b+c)(b+c-a)(a+c-b)(a+b-c)} = \frac{n}{4}\sqrt{3(n^2-4)}.$$

A é inteiro se e somente se n é par e $3(n^2-4)$ é um quadrado perfeito. Substituindo n por 2x e A por ny, obtemos a equação $3x^2-3=y^2$. Então y é divisível por 3, digamos y=3z, e daí a equação anterior equivale à equação de Pell $x^2-3z^2=1$. A solução fundamental dessa última é $(x_1,z_1)=(2,1)$, donde todas as outras soluções são geradas pelas recorrências $x_{n+1}=2x_n+3z_n$ e $z_{n+1}=x_n+2z_n$, $n\geq 1$. Os triângulos procurados são os que têm lados de medidas $2x_n-1$, $2x_n$ e $2x_n+1$, cuja área é $3x_nz_n$.

Exemplo 8. Encontre o menor inteiro positivo n para o qual 19n+1 e 95n+1 sejam ambos quadrados perfeitos.

Sejam $19n + 1 = x^2$ e $95n + 1 = y^2$. Então $5x^2 - y^2 = 4$, que é a equação analisada no problema 45. Suas soluções são os pares $(F_{2m-1}, L_{2m-1}), m \ge 1$. Para que n seja mínimo,

basta calcular o menor número da seqüência de Fibonacci múltiplo de 19, que é $F_{17}=1597$. Assim,

$$n = \frac{F_{17}^2 - 1}{19} = 134232.$$

Exemplo 9. Dado n > 1, mostre que existe um conjunto S de n pontos no plano tal que:

- 1. Não existem três pontos de S colineares;
- 2. A distância entre quaisquer dois pontos de S é um inteiro.

Como a equação de Pell $x^2 - 2y^2 = -1$ admite a solução (1,1), ela admite infinitas. Sejam então a_1, a_2, \ldots, a_n inteiros satisfazendo as seguintes condições:

(i)
$$a_i^2 + 1 = 2b_i^2$$
, $i = 1, 2, \dots, n$;

(ii)
$$a_1 < a_2 < \dots < a_n$$
.

Tome $S = \{P_1, P_2, \dots, P_n\}$, onde P_1, P_2, \dots, P_n são pontos sobre a circunferência unitária definidos por

$$P_i = \left(\frac{2a_i}{a_i^2 + 1}, \frac{a_i^2 - 1}{a_i^2 + 1}\right), i = 1, 2, \dots, n.$$

Um cálculo simples mostra que a distância entre quaisquer dois pontos de S é racional. Multiplicando as coordenadas desses pontos pelo mínimo múltiplo comum dos denominadores de todas as frações das distâncias entre dois pontos, obtemos um conjunto de n pontos sobre uma mesma circunferência, em particular não existindo três colineares, tais que a distância entre quaisquer dois deles é inteira.

Problema 10. (IMO 1975) Existem 1975 pontos sobre uma circunferência de raio 1 de modo que a distância entre quaisquer dois desses pontos é racional?

Problema 11. Seja $n \geq 3$ um inteiro. Mostre que existe um conjunto S de n pontos no plano tal que a distância entre quaisquer dois pontos de S é irracional e a área de qualquer triângulo com vértices em S é racional.

Problema 12. Prove que a equação $x^2 - dy^2 = -1$ não tem solução se d é divisível por um primo da forma 4k + 3.

Problema 13. Sejam d, k inteiros positivos tais que d não \acute{e} um quadrado perfeito. Mostre que existem infinitos pares de inteiros positivos (x,y) tais que k|y e $x^2 - dy^2 = 1$.

Outros Resultados

Para o leitor familiarizado com frações contínuas, basta sabermos as n-ésimas convergências da expansão de \sqrt{d} para determinarmos as soluções de $x^2 - \sqrt{d}y^2 = 1$, como diz a proposição abaixo:

Proposição 14. Todas as soluções de $x^2 - \sqrt{d}y^2 = 1$ podem ser encontradas em $x_n = h_n$, $y_n = k_n$, onde $\frac{h_n}{k_n}$ são as n-ésimas convergências da expansão em frações contínuas de \sqrt{d} . Se r é o período da expansão em frações contínuas de \sqrt{d} temos:

- I) Se r é par então $x^2-\sqrt{d}y^2=-1$ não tem solução e todas soluções positivas de $x^2-\sqrt{d}y^2=1$ são dadas por $x=h_{nr-1}$, $y=k_{nr-1}$ para $n=1,2,3,\ldots$
- II) Se r impar então $x = h_{nr-1}$, $y = k_{nr-1}$ produzem todas as soluções de $x^2 \sqrt{d}y^2 = -1$ quando $n = 1, 3, 5, \ldots$, e todas as soluções de $x^2 \sqrt{d}y^2 = 1$ quando $n = 2, 4, 6 \ldots$

Corolário 16. Suponha que N é um inteiro não nulo e que d seja livre de quadradados. Se $x^2 - dy^2 = N$ tem uma solução, então tem infinitas.

Proposição 17. Seja d um inteiro que não é um quadrado perfeito, sejam $\frac{h_n}{k_n}$ as n-ésimas convergências da expansão em fração contínua de \sqrt{d} . Seja N um inteiro tal que |N| < d. Então qualquer solução positiva de x = s, y = t de $x^2 - \sqrt{d}y^2 = N$ com mdc(s,t) = 1 satisfaz $s = h_n$, $t = k_n$ para algum n.

Problemas Propostos

Problema 18. Mostre que existem infinitos inteiros n para os quais $n^2 + (n+1)^2$ é um quadrado perfeito.

Problema 19. Dado um inteiro positivo k, mostre que não existem inteiros (x, y) tais que $x^2 - (k^2 - 1)y^2 = -1$.

Problema 20. Mostre que, se $d \equiv 1 \pmod{4}$, então a equação $x^2 - dy^2 = -1$ tem solução.

Problema 21. (Banco IMO 2002) Existe um inteiro positivo m para o qual a equação

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{abc} = \frac{m}{a+b+c}$$

tem infinitas soluções inteiras positivas a, b, c?

Problema 22. Determine todos os pares (k,n) de inteiros positivos tais que

$$1+2+\cdots+k = (k+1)+(k+2)+\cdots+n.$$

Problema 23. Encontre todos os números da forma m(m+1)/3 que são quadrados perfeitos.

Problema 24. Encontre todos os números triangulares que são quadrados perfeitos.

Problema 25. Resolva a equação $(x+1)^3 - x^3 = y^2$ em inteiros positivos.

Problema 26. Encontre todos os inteiros positivos n para os quais 2n + 1 e 3n + 1 sejam ambos quadrados perfeitos e mostre que todos esses inteiros são divisíveis por 40.

Problema 27. Seja n um inteiro positivo tal que 3n + 1 e 4n + 1 são ambos quadrados perfeitos. Mostre que n é divisível por 56.

Problema 28. Prove que existem infinitos inteiros positivos n para os quais n^2+1 divide n!.

Problema 29. Prove que a equação

$$x^2 + y^2 + z^2 + 2xyz = 1$$

admite infinitas soluções inteiras positivas (x, y, z).

Problema 30. Encontre todos os inteiros positivos n para os quais existem inteiros positivos distintos a_1, a_2, \ldots, a_n tais que

$$\frac{1}{a_1} + \frac{2}{a_2} + \dots + \frac{n}{a_n} = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Problema 31. (Vietnã 1992) Encontre todos os pares de inteiros positivos (x,y) satisfazendo a equação

$$x^2 + y^2 - 5xy + 5 = 0.$$

POT 2012 - Teoria dos Números - Nível 2 - Aula 15 - Samuel FelfelsERÊNCIAS

Problema 32. Encontre todos os naturais n para os quais n+1 e 3n+1 são ambos quadrados perfeitos.

Problema 33. Encontre todos os pares de naturais (m, n) satisfazendo a igualdade

$$1 + 2 + 3 + \cdots + n = m^2$$
.

Problema 34. (Banco IMO 1967) Qual fração p/q, onde p,q são inteiros positivos menores que 100, é a mais próxima de $\sqrt{2}$? Encontre todos os dígitos após a vírgula da representação decimal dessa fração que coincidem com os dígitos da representação decimal de $\sqrt{2}$.

Problema 35. (Banco IMO 2003) Seja b > 5 um inteiro. Para cada natural n, seja x_n a representação na base b do número

$$\underbrace{11\cdots 1}_{n-1}\underbrace{22\cdots 2}_{n}5.$$

Prove que a seguinte condição é verdadeira se e somente se b = 10:

"Existe um inteiro positivo n_0 tal que, para cada $n > n_0$, o número x_n é um quadrado perfeito."

Problema 36. (Torneio das Cidades 1997) Prove que a equação

$$x^2 + u^2 - z^2 = 1997$$

tem infinitas soluções inteiras (x, y, z).

Problema 37. (Irlanda 1995) Determine todos os inteiros a para os quais a equação

$$x^2 + axy + y^2 = 1$$

tem infinitas soluções inteiras positivas (x,y) tais que $x \neq y$.

Referências

- [1] F. E. Brochero Martinez, C. G. Moreira, N. C. Saldanha, E. Tengan Teoria dos Números? um passeio com primos e outros números familiares pelo mundo inteiro, Projeto Euclides, IMPA, 2010.
- [2] E. Carneiro, O. Campos and F. Paiva, Olimpíadas Cearenses de Matemática 1981-2005 (Níveis Júnior e Senior), Ed. Realce, 2005.
- [3] S. B. Feitosa, B. Holanda, Y. Lima and C. T. Magalhães, Treinamento Cone Sul 2008. Fortaleza, Ed. Realce, 2010.

POT 2012 - Teoria dos Números - Nível 2 - Aula 15 - Samuel Fælfæs $\hat{E}R\hat{E}NCIAS$

- [4] D. Fomin, A. Kirichenko, Leningrad Mathematical Olympiads 1987-1991, MathPro Press, Westford, MA, 1994.
- [5] D. Fomin, S. Genkin and I. Itenberg, Mathematical Circles, Mathematical Words, Vol. 7, American Mathematical Society, Boston, MA, 1966.
- [6] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers.