Polos Olímpicos de Treinamento

Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira

Descenso infinito de Fermat

1 Descenso Infinito de Fermat

Dada uma equação

$$f(x_1,\ldots,x_n)=0,$$

o método do descenso infinito (quando aplicável) permite mostrar que esta equação não possui soluções inteiras positivas ou, sob certas condições, até mesmo encontrar todas as suas soluções inteiras. Se o conjunto de soluções de f

$$A = \{(x_1, \dots, x_n) \in \mathbb{Z}^n \mid f(x_1, \dots, x_n) = 0\}$$

é diferente de vazio, então gostaríamos de considerar a solução "mínima" em certo sentido. Em outras palavras, queremos construir uma função $\phi \colon A \to \mathbb{N}$ e considerar a solução $(x_1, \ldots, x_n) \in A$ com $\phi(x_1, \ldots, x_n)$ mínimo. O descenso consiste em obter, a partir desta solução mínima, uma ainda menor, o que nos conduz claramente a uma contradição, provando que A é de fato vazio.

Para ilustrar este método consideremos o seguinte

Exemplo 1 (Fermat). Demonstrar que a equação $x^4 + y^4 = z^2$ não possui soluções inteiras positivas.

SOLUÇÃO: Suponhamos que $x^4+y^4=z^2$ possui uma solução inteira com x,y,z>0. Logo existe uma solução (a,b,c) na qual c é mínimo. Em particular, temos que a e b são primos entre si, pois se $d=\mathrm{mdc}(a,b)>1$ poderíamos substituir (a,b,c) por $(\frac{a}{d},\frac{b}{d},\frac{c}{d^2})$ e obter uma solução com c menor. De $(a^2)^2+(b^2)^2=c^2$ temos portanto que (a^2,b^2,c) é uma tripla pitagórica primitiva e assim existem inteiros positivos m e n primos relativos tais que

$$a^2 = m^2 - n^2$$
, $b^2 = 2mn$ e $c = m^2 + n^2$.

Temos da primeira equação que (a, n, m) é uma tripla pitagórica primitiva e portanto m é ímpar. Assim, de $b^2 = 2mn$ concluímos que b, e portanto n, é par. Observando ainda que $b^2 = (2n)m$ é um quadrado perfeito e mdc(2n, m) =

1, concluímos que tanto 2n como m são quadrados perfeitos, donde podemos encontrar inteiros positivos s e t tais que

$$2n = 4s^2$$
 e $m = t^2$.

Por outra parte, dado que $a^2 + n^2 = m^2$, então existirão inteiros positivos i e j, primos entre si, tais que

$$a = i^2 - j^2$$
, $n = 2ij$ e $m = i^2 + j^2$.

Portanto $s^2 = \frac{n}{2} = ij$, logo i e j serão quadrados perfeitos, digamos $i = u^2$ e $i = v^2$.

Logo temos que $m=i^2+j^2,\,i=u^2,\,j=v^2$ e $m=t^2,$ assim

$$t^2 = u^4 + v^4$$
.

isto é, (u, v, t) é outra solução da equação original. Porém

$$t < t^2 = m < m^2 < m^2 + n^2 = c$$

e $t \neq 0$ porque m é diferente de 0. Isto contradiz a minimalidade de c, o que conclui a demonstração.

Observemos além disso que, uma vez que esta equação não possui soluções inteiras positivas, então a equação $x^4 + y^4 = z^4$ e, mais geralmente $x^{4n} + y^{4n} = z^{4n}$, não possuem soluções inteiras positivas.

Exemplo 2 (IMO1981). Encontrar todas as soluções inteiras positivas da equação

$$m^2 - mn - n^2 = \pm 1$$
.

Solução: Note que $m^2=n^2+mn\pm 1\geq n^2 \implies m\geq n$, com igualdade se, e só se, (m,n)=(1,1), que é claramente uma solução. Agora seja (m,n) uma solução com m>n. Demonstremos que (n,m-n) também é solução. Para isto observemos que

$$n^{2} - n(m - n) - (m - n)^{2} = n^{2} - nm + n^{2} - m^{2} + 2mn - n^{2}$$
$$= n^{2} + nm - m^{2}$$
$$= -(m^{2} - nm - n^{2}) = \mp 1,$$

Assim, se temos uma solução (m,n), podemos encontrar uma cadeia descendente de soluções, e este processo parará quando atingirmos uma solução (a,b) com a=b, ou seja, a solução (1,1). Invertendo o processo, encontraremos portanto todas as soluções, isto é, se (m,n) é solução então (m+n,m) é solução. Portanto todas as soluções positivas são

$$(1,1), (2,1), (3,2), \ldots, (F_{n+1},F_n), \ldots$$

onde F_n representa o n-ésimo termo da sequência de Fibonacci.

Exemplo 3 (IMO2003). Determine todos os pares de inteiros positivos (a,b) para os quais

$$\frac{a^2}{2ab^2 - b^3 + 1}$$

é um inteiro positivo.

SOLUÇÃO: Seja (a,b) uma solução inteira positiva. Logo $2ab^2 - b^3 + 1 \ge 1$, e portanto $a \ge \frac{b}{2}$. No caso $a = \frac{b}{2}$, é claro que obtemos uma solução. Para qualquer outra solução, $a > \frac{b}{2}$ e nesse caso $a^2 \ge 2ab^2 - b^3 + 1 = b^2(2a - b) + 1 > b^2 \implies a > b$.

Agora se $\frac{a^2}{2ab^2-b^3+1}=k\in\mathbb{N}$, então a é raiz do polinômio com coeficientes inteiros

$$x^2 - 2kb^2x + k(b^3 - 1) = 0.$$

Mas este polinômio possui outra solução inteira $a_1 = 2kb^2 - a = \frac{k(b^3-1)}{a} \ge 0$, assim (a_1,b) também é solução do problema se b > 1. Supondo que a é a maior raiz, de $a \ge a_1$ teremos que $a \ge kb^2$ e assim

$$a_1 = \frac{k(b^3 - 1)}{a} \le \frac{k(b^3 - 1)}{kb^2} < b.$$

Desta forma, ou b=1 ou $a_1=\frac{b}{2}$ e neste último caso $k=\frac{b^2}{4}$ e $a=\frac{b^4}{2}-\frac{b}{2}$. Portanto as soluções do problema são $(a,b)=(l,2l),\,(2l,1)$ ou $(8l^4-l,2l),\,$ com $l\in\mathbb{N}$.

1.1 Equação de Markov

A equação de Markov é a equação diofantina em inteiros positivos

$$x^2 + y^2 + z^2 = 3xyz.$$

É óbvio que (1,1,1) e (1,1,2) são soluções da equação. Além disso, como a equação é simétrica, podemos considerar, sem perda de generalidade, somente as soluções com as coordenadas $x \le y \le z$ ordenadas de forma não decrescente.

Assim suponhamos que (x,y,z) é uma solução com $x \leq y \leq z$ com z > 1. O polinômio quadrático

$$T^2 - 3xyT + (x^2 + y^2) = 0$$

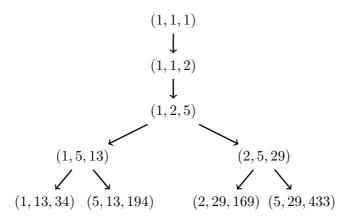
possui duas soluções, e uma dela é z, assim a outra é $z'=3xy-z=\frac{x^2+y^2}{z}\in\mathbb{Z}\setminus\{0\}$. Vejamos que se y>1 então z'< y, e assim (z',x,y) é também solução (menor) da equação de Markov. Para isto, suponhamos por contradição que $\frac{x^2+y^2}{z}=z'\geq y$, isto é, $yz\leq x^2+y^2\leq 2y^2$, em particular $z\leq 2y$. Segue que

$$5y^2 \ge y^2 + z^2 = 3xyz - x^2 = x(3yz - x) \ge xy(3z - 1),$$

e portanto $5y \ge x(3z-1)$. Observemos que se $x \ge 2$, então $5y \ge 2(3z-1) \ge 5z$ e portanto x=y=z=2, que não é solução, o que é contraditório. Logo x=1

e $\frac{1+y^2}{y} \ge z$, assim $\frac{1}{y} + y \ge z \ge y$. Portanto ou temos $\frac{1}{y} + y = z$, e neste caso y=1 e z=2, o que contradiz y>1, ou y=z e substituindo na equação original temos que $1+y^2+y^2=3y^2$, o que implica que z=y=1, o que contradiz o fato de z>1.

Do fato anterior, temos que dada uma solução da equação de Markov (x,y,z) com $z\geq 2$ é sempre possível encontrar uma solução menor (z',x,y) e este processo somente para quando chegamos à solução (1,1,1), isto é, estamos gerando uma árvore de soluções da seguinte forma:



Um importante problema em aberto relacionado com a equação de Markov é o problema da unicidade, proposto por Frobenius há cerca de 100 anos em [3] (veja também [1]): para quaisquer inteiros positivos x_1, x_2, y_1, y_2, z com $x_1 \leq y_1 \leq z$ e $x_2 \leq y_2 \leq z$ tais que (x_1, y_1, z) e (x_2, y_2, z) são soluções da equação de Markov temos necessariamente $(x_1, y_1) = (x_2, y_2)$?

Se o problema da unicidade admitir uma solução afirmativa, para cada t real, sua pré-imagem $k^{-1}(t)$ pela função k definida na seção 3.4 consistirá de uma única classe de $GL_2(\mathbb{Z})$ -equivalência (veja o exercício 3.10).

1.2 Último Teorema de Fermat

Um dos mais famosos problemas na história da Matemática e talvez um dos que mais inspirou o desenvolvimento de novas teorias é o chamado *último* teorema de Fermat.

Pierre de Fermat, que tinha o costume de fazer anotações nas margens de sua cópia do livro de Diofanto, enunciou o teorema que afirma ser impossível encontrar inteiros positivos x,y,z tais que

$$x^n + y^n = z^n \tag{*}$$

quando n é um inteiro maior do que 2: "encontrei uma demonstração verdadeiramente maravilhosa para isto, mas a margem é demasiado pequena para contê-la".

Para mostrar a inexistência de soluções de (*), basta considerar os expoentes primos. Muitos casos particulares foram mostrados ao longo da história, os quais se dividem em dois tipos: o primeiro, quando $p \nmid xyz$, e o segundo, mais difícil, quando $p \mid xyz$. De fato, Sophie Germain provou o primeiro caso para

todo primo p tal que 2p+1 também é primo. Legendre provou o teorema para p primo quando 4p+1, 8p+1, 10p+1, 14p+1 ou 16p+1 é primo; com isto, provou o último teorema de Fermat para todo p < 100. Em 1849, Kummer obteve uma prova para todos os chamados primos regulares. Em 1909 Wieferich provou que se a equação de Fermat tem solução para p, então $2^{p-1} \equiv 1 \pmod{p^2}$; tais primos são chamados primos de Wieferich. Mirimanoff e Vandiver provaram respectivamente que p deve satisfazer $3^{p-1} \equiv 1 \pmod{p^2}$ e $5^{p-1} \equiv 1 \pmod{p^2}$, e Frobenius provou este mesmo resultado para 11 e 17 no lugar de 3 e 5.

A demonstração do último teorema de Fermat somente foi obtida depois de mais de trezentos anos após sua formulação. Tal demonstração, devida a Andrew Wiles e Richard Taylor ([6] e [5]), insere-se no contexto mais geral da chamada conjectura de Taniyama-Shimura-Weil sobre curvas elípticas, que implica a solução do último teorema de Fermat, como conjecturado por G. Frey em 1985 e provado por K. Ribet em 1986. Esta demonstração envolve ideias bastante avançadas e está muito longe do escopo deste livro. Para uma introdução às técnicas utilizadas na prova, veja [2].

Para dar uma ideia da dificuldade deste problema, vejamos uma prova baseada na de Leonhard Euler para o caso n=3. A demonstração original dada por Euler para o caso n=3 é incompleta já que supõe a fatoração única em irredutíveis para extensões de \mathbb{Z} . Começamos com um

Lema 4. Todas as soluções de $s^3 = a^2 + 3b^2$ em inteiros positivos tais que mdc(a,b) = 1 e s é ímpar são dadas por

$$s = m^2 + 3n^2$$
, $a = m^3 - 9mn^2$, $b = 3m^2n - 3n^3$.

 $com m + n \ impar \ e \ mdc(m, 3n) = 1.$

Demonstração. É fácil verificar que tais números fornecem uma solução da equação e, além disso,

$$mdc(a,b) = mdc(m(m^2 - 9n^2), 3n(m^2 - n^2))$$

= $mdc(m^2 - 9n^2, m^2 - n^2) = mdc(8n^2, m^2 - n^2) = 1.$

Reciprocamente, suponhamos que (a,b,s) é solução da equação. Seja p um número primo tal que $p \mid s$. Note que, como $\mathrm{mdc}(a,b) = 1$ e s é ímpar, $p \nmid a$, $p \nmid b$ e p > 3. Então $a^2 \equiv -3b^2 \pmod{p}$ e como b é invertível módulo p temos

$$\left(\frac{-3}{p}\right) = 1 \iff \left(\frac{p}{3}\right) = 1 \iff p \equiv 1 \pmod{6}$$

pela lei de reciprocidade quadrática. Sabemos que existem inteiros m_1 e n_1 tais que $p = m_1^2 + 3n_1^2$, e teremos que $p^3 = c^2 + 3d^2$ onde $c = m_1^3 - 9m_1n_1^2$ e $d = 3m_1^2n_1 - 3n_1^3$. Note que $\text{mdc}(p, m_1) = \text{mdc}(p, n_1) = 1$ e p > 3 e portanto mdc(p, c) = mdc(p, d) = 1, como na demonstração acima de que mdc(a, b) = 1.

Procederemos por indução sobre o número de divisores primos de s. Se s=1 o resultado é evidente. O caso em que s tem um divisor primo é exatamente o resultado anterior. Agora, suponhamos que o resultado valha para todo s que

tenha k fatores primos (não necessariamente distintos). Se s tem k+1 fatores primos, digamos s=pt com p primo (p>3), observemos que

$$t^{3}p^{6} = s^{3}p^{3} = (a^{2} + 3b^{2})(c^{2} + 3d^{2}) = (ac \pm 3bd)^{2} + 3(ad \mp bc)^{2}.$$

Além disso como

$$(ad + bc)(ad - bc) = (ad)^{2} - (bc)^{2} = d^{2}(a^{2} + 3b^{2}) - b^{2}(c^{2} + 3d^{2})$$
$$= p^{3}(t^{3}d^{2} - b^{2}),$$

então $p^3 \mid (ad+bc)(ad-bc)$. Se p divide os dois fatores, teremos que $p \mid ad$ e $p \mid bc$. Lembre que $\mathrm{mdc}(p,c) = \mathrm{mdc}(p,d) = 1$, o que implica que $p \mid a$ e $p \mid b$, o que contradiz a hipótese $\mathrm{mdc}(a,b) = 1$. Assim, p^3 divide exatamente um dos fatores, e tomando adequadamente os sinais teremos que

$$u = \frac{ac \pm 3bd}{p^3}, \quad v = \frac{ad \mp bc}{p^3}$$

são inteiros tais que $t^3 = u^2 + 3v^2$. Como t tem k fatores primos segue por hipótese de indução que

$$t = m_2^2 + 3n_2^2$$
, $u = m_2^3 - 9m_2n_2^2$, $v = 3m_2^2n_2 - 3n_2^3$.

Agora, dado que a = uc + 3vd e $b = \pm (ud - vc)$, substituindo t, u, v, c e d em termos de m_i e n_i (i = 1, 2) em s, a e b e fazendo $m = m_1m_2 + 3n_1n_2$, $n = m_1n_2 - m_2n_1$, obteremos o que queríamos demonstrar.

O método utilizado por Euler para demonstrar o caso n=3 é basicamente o método de descenso infinito.

Proposição 5. A equação diofantina $x^3 + y^3 = z^3$ não possui soluções inteiras com $xyz \neq 0$.

Demonstração. Suponhamos que a equação $x^3+y^3=z^3$ possui uma solução com x,y,z>0 e escolhemos está solução de tal forma que xyz seja mínimo. Como qualquer fator comum de dois destes números é também fator do terceiro, podemos afirmar que x,y,z são primos relativos dois a dois. Em particular um de tais números será par.

Note que x=y é impossível pois caso contrário $2x^3=z^3$ e o expoente da maior potência de 2 do lado direito seria múltiplo de 3, enquanto que do lado esquerdo não. Assim, sem perda de generalidade, podemos assumir que x>y.

Suponha primeiro que x e y são ímpares e z par, podemos escrever x = p + q e y = p - q com p > 0 e q > 0 primos relativos (pois x e y são primos relativos) e de diferente paridade, assim

$$x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

$$= 2p((p + q)^{2} - (p + q)(p - q) + (p - q)^{2})$$

$$= 2p(p^{2} + 3q^{2}).$$

Portanto $2p(p^2+3q^2)$ é um cubo perfeito. De igual forma, no caso em que z é ímpar e x ou y é par, podemos supor sem perda de generalidade que y é ímpar, e substituindo z=q+p e y=q-p obteremos

$$x^{3} = z^{3} - y^{3} = 2p((p+q)^{2} + (p+q)(q-p) + (q-p)^{2})$$
$$= 2p(p^{2} + 3q^{2}).$$

Como $p^2 + 3q^2$ é impar e $2p(p^2 + 3q^2)$ é um cubo perfeito temos que p será par. Calculando o máximo comum divisor entre p e $p^2 + 3q^3$, obtemos

$$mdc(p, p^2 + 3q^2) = mdc(p, 3q^2) = mdc(p, 3).$$

Portanto há dois casos: mdc(p,3) = 1 e mdc(p,3) = 3.

No primeiro, existem naturais a e b tais que $a^3=2p$ e $b^3=p^2+3q^2$. Neste caso sabemos, pelo lema 4, que existem inteiros m e n de diferente paridade e primos relativos tais que

$$b = m^2 + 3n^2$$
, $p = m^3 - 9mn^2$, $q = 3m^2n - 3n^3$.

Logo $a^3 = 2m(m-3n)(m+3n)$. Observemos que os números 2m, m-3n e m+3n são primos relativos, logo existem inteiros e, f e g tais que $2m=e^3$, $m-3n=f^3$ e $m+3n=g^3$. Em particular, teremos que $f^3+g^3=e^3$. Como

$$efg = a^3 = 2p \le x + y < xyz,$$

teremos uma solução menor, o que contradiz a escolha de x, y, z.

No caso em que $3 \mid p$, então p = 3r com $\mathrm{mdc}(r,q) = 1$, logo $z^3 = 18r(3r^2 + q^2)$ ou $x^3 = 18r(3r^2 + q^2)$ e portanto existem inteiros positivos a e b tais que $18r = a^3$ e $3r^2 + q^2 = b^3$. De novo, existiriam inteiros m e n tais que

$$b = m^2 + 3n^2$$
, $q = m^3 - 9mn^2$, $r = 3m^2n - 3n^3$.

Daqui segue que $a^3 = 27(2n)(m-n)(m+n)$. De igual forma teremos que os números 2n, m-n e m+n são primos relativos, portanto existem inteiros positivos e, f e g tais que

$$2n = e^3$$
, $m - n = f^3$, $m + n = g^3$.

Segue que $e^3 + f^3 = g^3$, que também contradiz a minimalidade da solução (x,y,z).

Exemplo 6. Demonstrar que a equação $x^2+432=y^3$ não tem soluções racionais diferentes de $(\pm 36,12)$.

Solução: Suponhamos que a equação possui uma solução (a,b) com $b \neq 12$. Como a e b são racionais, então $\frac{a}{36} = \frac{k}{n} \neq \pm 1$ e $\frac{b}{12} = \frac{m}{n} \neq 1$ com $k,m,n \in \mathbb{Z}$. Seja $u=n+k\neq 0,\ v=n-k\neq 0$ e w=2m. Como

$$u^3 + v^3 - w^3 = 2n^3 + 6nk^2 - 8m^3$$

e $k = \frac{an}{36}, m = \frac{bn}{12}$, substituindo temos

$$u^{3} + v^{3} - w^{3} = 2n^{3} + \frac{n^{3}a^{2}}{6^{3}} - \frac{n^{3}b^{3}}{6^{3}} = \frac{n^{3}}{216}(432 + a^{2} - b^{3}) = 0.$$

o que gera uma solução não trivial da equação $x^3 + y^3 = z^3$, um absurdo. \square

Problemas Propostos

Problema 7. Demonstrar que não existe um triângulo retângulo com lados inteiros tal que sua área seja um quadrado perfeito.

Problema 8. Encontrar todos os pares (n,m) de números inteiros tais que $n \mid m^2 + 1$ e $m \mid n^2 + 1$.

Problema 9 (IMO1987). Seja n um inteiro maior ou igual a 2. Mostre que se k^2+k+n é primo para todo k tal que $0 \le k \le \sqrt{\frac{n}{3}}$, então k^2+k+n é primo para todo k tal que $0 \le k \le n-2$.

Problema 10 (IMO1988). Dados inteiros a e b tais que o número ab+1 divide a^2+b^2 , demonstrar que

$$\frac{a^2 + b^2}{ab + 1}$$

é um quadrado perfeito.

Problema 11 (IMO2007). Prove que se a e b são inteiros positivos tais que $4ab-1 \mid (4a^2-1)^2 \ então \ a=b$.

Problema 12. Demonstrar que a equação $3x^2 + 1 = y^3$ não tem soluções racionais diferentes de $x = \pm 1$ e y = 1.

Problema 13. Demonstrar que a equação $x^3 + y^3 + z^3 = 1$ possui infinitas soluções inteiras.

Problema 14. Demonstrar que a equação $x^3 + y^3 + z^3 = n$ com $n = 9k \pm 4$ não possui soluções inteiras.

Problema 15. Demonstrar que a equação $x^3 + y^3 + z^3 = t^3$ possui infinitas soluções inteiras positivas primitivas (i.e., com mdc(x, y, z, t) = 1).

Problema 16. Demonstrar que a equação $x^3 + y^3 = 2z^3$ não possui soluções inteiras positivas não triviais (i.e. além das com x = y = z).

Dicas e Soluções

Em breve.

Referências

- [1] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics 45, Hafner Publishing Co. (1972)
- [2] G. Cornell, J. H. Silverman e G. Stevens, Modular Forms and Fermat's Last Theorem, Springer-Verlag (2009).

- [3] G. Frobenius, Über die Markoffschen Zahlen, Preuss. Akad. Wiss. Sitzungberichte (1913), 458–487; disponível também em G. Frobenius, Gesammelte Abhandlungen, vol. 3, Springer (1968), 598–627.
- [4] F. E. Brochero Martinez, C. G. Moreira, N. C. Saldanha, E. Tengan Teoria dos Números um passeio com primos e outros números familiares pelo mundo inteiro, Projeto Euclides, IMPA, 2010.
- [5] R. Taylor e A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995), no. 3, 553–572.
- [6] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551.